ebook img

Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition PDF

392 Pages·2013·18.56 MB·\392
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition

Bayesian Disease Mapping Hierarchical Modeling in Spatial Epidemiology Second Edition CHAPMAN & HALL/CRC Interdisciplinar y Statistics Series Series editors: N. Keiding, B.J.T. Morgan, C.K. Wikle, P. van der Heijden Published titles AN INVARIANT APPROACH TO S. Lele and J. Richtsmeier STATISTICAL ANALYSIS OF SHAPES ASTROSTATISTICS G. Babu and E. Feigelson BAYESIAN ANALYSIS FOR Ruth King, Byron J. T. Morgan, POPULATION ECOLOGY Olivier Gimenez, and Stephen P. Brooks BAYESIAN DISEASE MAPPING: Andrew B. Lawson HIERARCHICAL MODELING IN SPATIAL EPIDEMIOLOGY, SECOND EDITION BIOEQUIVALENCE AND S. Patterson and STATISTICS IN CLINICAL B. Jones PHARMACOLOGY CLINICAL TRIALS IN ONCOLOGY, S. Green, J. Benedetti, THIRD EDITION A. Smith, and J. Crowley CLUSTER RANDOMISED TRIALS R.J. Hayes and L.H. Moulton CORRESPONDENCE ANALYSIS M. Greenacre IN PRACTICE, SECOND EDITION DESIGN AND ANALYSIS OF D.L. Fairclough QUALITY OF LIFE STUDIES IN CLINICAL TRIALS, SECOND EDITION DYNAMICAL SEARCH L. Pronzato, H. Wynn, and A. Zhigljavsky FLEXIBLE IMPUTATION OF MISSING DATA S. van Buuren GENERALIZED LATENT VARIABLE A. Skrondal and MODELING: MULTILEVEL, S. Rabe-Hesketh LONGITUDINAL, AND STRUCTURAL EQUATION MODELS GRAPHICAL ANALYSIS OF K. Basford and J. Tukey MULTI-RESPONSE DATA MARKOV CHAIN MONTE CARLO W. Gilks, S. Richardson, IN PRACTICE and D. Spiegelhalter Published titles INTRODUCTION TO M. Waterman COMPUTATIONAL BIOLOGY: MAPS, SEQUENCES, AND GENOMES MEASUREMENT ERROR AND P. Gustafson MISCLASSIFICATION IN STATISTICS AND EPIDEMIOLOGY: IMPACTS AND BAYESIAN ADJUSTMENTS MEASUREMENT ERROR: J. P. Buonaccorsi MODELS, METHODS, AND APPLICATIONS META-ANALYSIS OF BINARY DATA D. Böhning, R. Kuhnert, USING PROFILE LIKELIHOOD and S. Rattanasiri STATISTICAL ANALYSIS OF GENE T. Speed EXPRESSION MICROARRAY DATA STATISTICAL AND COMPUTATIONAL R. Wu and M. Lin PHARMACOGENOMICS STATISTICS IN MUSICOLOGY J. Beran STATISTICS OF MEDICAL IMAGING T. Lei STATISTICAL CONCEPTS J. Aitchison, J.W. Kay, AND APPLICATIONS IN and I.J. Lauder CLINICAL MEDICINE STATISTICAL AND PROBABILISTIC P.J. Boland METHODS IN ACTUARIAL SCIENCE STATISTICAL DETECTION AND P. Rogerson and I. Yamada SURVEILLANCE OF GEOGRAPHIC CLUSTERS STATISTICS FOR ENVIRONMENTAL A. Bailer and W. Piegorsch BIOLOGY AND TOXICOLOGY STATISTICS FOR FISSION R.F. Galbraith TRACK ANALYSIS VISUALIZING DATA PATTERNS D.B. Carr and L.W. Pickle WITH MICROMAPS TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk Chapman & Hall/CRC Interdisciplinary Statistics Series Bayesian Disease Mapping Hierarchical Modeling in Spatial Epidemiology Second Edition Andrew B. Lawson Division of Biostatistics and Epidemiology Medical University of South Carolina (MUSC) Charleston, South Carolina, USA MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft- ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20130305 International Standard Book Number-13: 978-1-4665-0482-0 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents List of Tables xiii Preface xv Preface to Second Edition xvii I Background 1 1 Introduction 3 1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Bayesian Inference and Modeling 19 2.1 Likelihood Models . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Spatial Correlation . . . . . . . . . . . . . . . . . . . . 20 2.2 Prior Distributions . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Propriety . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 Non-informative Priors . . . . . . . . . . . . . . . . . . 22 2.3 Posterior Distributions . . . . . . . . . . . . . . . . . . . . . . 23 2.3.1 Conjugacy . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.2 Prior Choice. . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 Predictive Distributions . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Poisson-Gamma Example . . . . . . . . . . . . . . . . 26 2.5 Bayesian Hierarchical Modeling . . . . . . . . . . . . . . . . . 26 2.6 Hierarchical Models . . . . . . . . . . . . . . . . . . . . . . . . 26 2.7 Posterior Inference . . . . . . . . . . . . . . . . . . . . . . . . 28 2.7.1 A Bernoulli and Binomial Example . . . . . . . . . . . 29 2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Computational Issues 35 3.1 Posterior Sampling . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Markov Chain Monte Carlo Methods . . . . . . . . . . . . . . 36 3.3 Metropolis and Metropolis-Hastings Algorithms . . . . . . . . 37 3.3.1 Metropolis Updates. . . . . . . . . . . . . . . . . . . . 37 3.3.2 Metropolis-Hastings Updates . . . . . . . . . . . . . . 37 3.3.3 Gibbs Updates . . . . . . . . . . . . . . . . . . . . . . 38 3.3.4 M-H versus Gibbs Algorithms . . . . . . . . . . . . . . 38 3.3.5 Special Methods . . . . . . . . . . . . . . . . . . . . . 39 vii viii Contents 3.3.6 Convergence. . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.7 Subsampling and Thinning . . . . . . . . . . . . . . . 44 3.4 Perfect Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5 Posterior and Likelihood Approximations . . . . . . . . . . . 47 3.5.1 Pseudo-likelihood and Other Forms . . . . . . . . . . . 47 3.5.2 Asymptotic Approximations . . . . . . . . . . . . . . . 48 3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Residuals and Goodness-of-Fit 53 4.1 Model GOF Measures . . . . . . . . . . . . . . . . . . . . . . 53 4.1.1 The Deviance Information Criterion . . . . . . . . . . 54 4.1.2 Posterior Predictive Loss. . . . . . . . . . . . . . . . . 55 4.2 General Residuals . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 Bayesian Residuals . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Predictive Residuals and the Bootstrap . . . . . . . . . . . . . 59 4.4.1 Conditional Predictive Ordinates . . . . . . . . . . . . 60 4.5 Interpretation of Residuals in a Bayesian Setting . . . . . . . 61 4.6 Pseudo Bayes Factors and Marginal Predictive Likelihood . . 62 4.7 Other Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.8 Exceedence Probabilities . . . . . . . . . . . . . . . . . . . . . 64 4.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 II Themes 69 5 Disease Map Reconstruction and Relative Risk Estimation 71 5.1 An Introduction to Case Event and Count Likelihoods . . . . 71 5.1.1 The Poisson Process Model . . . . . . . . . . . . . . . 71 5.1.2 The Conditional Logistic Model . . . . . . . . . . . . . 72 5.1.3 The Binomial Model for Count Data . . . . . . . . . . 73 5.1.4 The Poisson Model for Count Data . . . . . . . . . . . 74 5.2 Specification of the Predictor in Case Event and Count Models 75 5.2.1 The Bayesian Linear Model . . . . . . . . . . . . . . . 76 5.3 Simple Case and Count Data Models with Uncorrelated Ran- dom Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.1 Gamma and Beta Models . . . . . . . . . . . . . . . . 78 5.3.2 Log-normal/Logistic-normal Models . . . . . . . . . . 80 5.4 Correlated Heterogeneity Models . . . . . . . . . . . . . . . . 81 5.4.1 Conditional Autoregressive (CAR) Models . . . . . . . 83 5.4.2 Fully-specified Covariance Models. . . . . . . . . . . . 86 5.5 Convolution Models . . . . . . . . . . . . . . . . . . . . . . . 87 5.6 Model Comparison and Goodness-of-Fit Diagnostics . . . . . 88 5.6.1 Residual Spatial Autocorrelation . . . . . . . . . . . . 90 5.7 Alternative Risk Models . . . . . . . . . . . . . . . . . . . . . 92 5.7.1 Autologistic Models . . . . . . . . . . . . . . . . . . . 93 5.7.2 Spline-based Models . . . . . . . . . . . . . . . . . . . 96 Contents ix 5.7.3 Zip Regression Models . . . . . . . . . . . . . . . . . . 99 5.7.4 Ordered and Unordered Multi-Category Data . . . . . 102 5.7.5 Latent Structure Models . . . . . . . . . . . . . . . . . 102 5.8 Edge Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.8.1 Edge Weighting Schemes and McMC Methods . . . . 107 5.8.2 Discussion and Extension to Space-Time . . . . . . . . 108 5.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.9.1 Maximum Likelihood . . . . . . . . . . . . . . . . . . . 109 5.9.2 Poisson-Gamma Model: Posterior and Predictive In- ference . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.9.3 Poisson-Gamma Model: Empirical Bayes . . . . . . . . 111 6 Disease Cluster Detection 113 6.1 Cluster Definitions . . . . . . . . . . . . . . . . . . . . . . . . 113 6.1.1 Hot Spot Clustering . . . . . . . . . . . . . . . . . . . 115 6.1.2 Clusters as Objects or Groupings . . . . . . . . . . . . 115 6.1.3 Clusters Defined as Residuals . . . . . . . . . . . . . . 115 6.2 Cluster Detection using Residuals . . . . . . . . . . . . . . . . 116 6.2.1 Case Event Data . . . . . . . . . . . . . . . . . . . . . 116 6.2.2 Count Data . . . . . . . . . . . . . . . . . . . . . . . . 120 6.3 Cluster Detection using Posterior Measures . . . . . . . . . . 122 6.4 Cluster Models . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.4.1 Case Event Data . . . . . . . . . . . . . . . . . . . . . 125 6.4.2 Count Data . . . . . . . . . . . . . . . . . . . . . . . . 133 6.4.3 Markov Connected Component Field (MCCF) Models 137 6.5 Edge Detection and Wombling . . . . . . . . . . . . . . . . . 139 7 Regression and Ecological Analysis 141 7.1 Basic Regression Modeling . . . . . . . . . . . . . . . . . . . . 141 7.1.1 Linear Predictor Choice . . . . . . . . . . . . . . . . . 141 7.1.2 Covariate Centering . . . . . . . . . . . . . . . . . . . 142 7.1.3 Initial Model Fitting . . . . . . . . . . . . . . . . . . . 142 7.1.4 Contextual Effects . . . . . . . . . . . . . . . . . . . . 145 7.2 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.2.1 Missing Outcomes . . . . . . . . . . . . . . . . . . . . 146 7.2.2 Missing Covariates . . . . . . . . . . . . . . . . . . . . 151 7.3 Non-Linear Predictors . . . . . . . . . . . . . . . . . . . . . . 151 7.4 Confounding and Multi-colinearity . . . . . . . . . . . . . . . 152 7.5 Geographically Dependent Regression . . . . . . . . . . . . . 155 7.6 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.7 Ecological Analysis: The General Case of Regression . . . . . 159 7.8 Biases and Misclassification Error . . . . . . . . . . . . . . . . 165 7.8.1 Ecological Biases . . . . . . . . . . . . . . . . . . . . . 165

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.