Table Of ContentBayesian
Artificial
Intelligence
Kevin B. Korb
Ann E. Nicholson
CHAPMAN & HALL/CRC
A CRC Press Company
Boca Raton London New York Washington, D.C.
© 2004 by Chapman & Hall/CRC Press LLC
Chapman & Hall/CRC
Series in Computer Science and Data Analysis
The interface between the computer and statistical sciences is increasing,
as each discipline seeks to harness the power and resources of the other.
This series aims to foster the integration between the computer sciences
and statistical, numerical and probabilistic methods by publishing a broad
range of reference works, textbooks and handbooks.
SERIES EDITORS
John Lafferty, Carnegie Mellon University
David Madigan, Rutgers University
Fionn Murtagh, Queen’s University Belfast
Padhraic Smyth, University of California Irvine
Proposals for the series should be sent directly to one of the series editors
above, or submitted to:
Chapman & Hall/CRC Press UK
23-25 Blades Court
London SW15 2NU
UK
© 2004 by Chapman & Hall/CRC Press LLC
Library of Congress Cataloging-in-Publication Data
Korb, Kevin B.
Bayesian artificial intelligence / Kevin B. Korb, Ann E. Nicholson.
p. cm. — (Chapman & Hall/CRC computer science and data analysis)
Includes bibliographical references and index.
ISBN 1-58488-387-1 (alk. paper)
1. Bayesian statistical decision theory—Data processing. 2. Machine learning. 3. Neural
networks (Computer science) I. Nicholson, Ann E. II. Title. III. Series.
QA279.5.K67 2003
519.5¢42—dc21 2003055428
This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.
Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.
The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.
Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.
Visit the CRC Press Web site at www.crcpress.com
© 2004 by Chapman & Hall/CRC
No claim to original U.S. Government works
International Standard Book Number 1-58488-387-1
Library of Congress Card Number 2003055428
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0
Printed on acid-free paper
© 2004 by Chapman & Hall/CRC Press LLC
To JudeaPearland ChrisWallace
© 2004 by Chapman & Hall/CRC Press LLC
Preface
BayesianArtificialIntelligence,inourunderstanding,istheincorporationofBayes-
ianinferentialmethodsinthedevelopmentofasoftwarearchitectureforanArtificial
Intelligence(AI).Webelievethatimportantingredientsofsuchanarchitecturewill
be Bayesian networks and the Bayesian learning of Bayesian networks (Bayesian
causaldiscovery)fromobservationandexperiment. Inthisbookwepresenttheel-
ementsofBayesiannetworktechnology,automatedcausaldiscovery,learningprob-
abilitiesfromdata,andexamplesandideasabouthowtoemploythesetechnologies
in developingprobabilistic expertsystems, which we call Knowledge Engineering
withBayesianNetworks.
Thisisaverypracticalproject,becausedataminingwithBayesiannetworks(ap-
plied causal discovery) and the deployment of Bayesian networks in industry and
governmentaretwoofthemostpromisingareasinappliedAItoday.Butitisalsoa
verytheoreticalproject,becausetheachievementofaBayesianAIwouldbeamajor
theoreticalachievement.
Withourtitlethereareanumberofsubjectswecouldnaturallyinclude,buthave
not. Thus, another necessary aspect of an effective Bayesian AI will be the learn-
ingofconcepts,andhierarchiesofconcepts. Bayesianmethodsforconceptforma-
tion exist (e.g., Chris Wallace’s Snob [290]), but we do not treat them here. We
couldalsohavediscussedBayesianmethodsofclassification,polynomialcurvefit-
ting,timeseriesmodeling,etc. Wehavechosentohewclosetothethemeofusing
anddiscoveringBayesiannetworksbothbecausethisisourownmainresearcharea
and because, importantas theotherBayesian learningmethodsare, we believethe
Bayesiannetworktechnologyiscentraltotheoverallproject.
OurtextdiffersfromothersavailableonBayesiannetworksinanumberofways.
We aim at a practicaland accessible introductionto the main conceptsin the tech-
nology,whilepayingattentiontofoundationalissues. Mosttextsinthisarearequire
somewhatmoremathematicalsophisticationthanours;wepresupposeonlyabasic
understandingof algebra and calculus. Also, we give roughly equal weight to the
causaldiscoveryofnetworksandtotheBayesianinferenceproceduresusinganet-
workoncefound.Mosttextseitherignorecausaldiscoveryortreatitlightly.Richard
Neapolitan’srecentbook,LearningBayesianNetworks[200],isanexception,butit
ismoretechnicallydemandingthanours. Anotherdistinguishingfeatureofourtext
isthatweadvocateacausalinterpretationofBayesiannetworks,andwediscussthe
use of Bayesian networks for causal modeling. We also illustrate variousapplica-
tionsofthetechnologyatlength,drawinguponourownappliedresearch. Wehope
thattheseillustrationswillbeofsomeinterestandindicatesomeofthepossibilities
© 2004 by Chapman & Hall/CRC Press LLC
for the technology. Our textisaimed atadvancedundergraduatesin computersci-
encewhohavesomebackgroundin artificialintelligenceandatthosewhowish to
engageinappliedorpureresearchinBayesiannetworktechnology.
ThebookWebsiteis
http://www.csse.monash.edu.au/bai
and containsa varietyof aids for study, includingexampleBayesian networksand
datasets. Instructorscanemailusforsamplesolutionstomanyoftheproblemsin
thetext.
There are many whom we wish to acknowledge. For assistance reviewing por-
tions of the text we thank: David Albrecht, Helen Armstrong, Tali Boneh, Darren
Boulton, Mark Burgman, Steven Gardner, Lucas Hope, Finn Jensen, Emily Korb,
RichardNeapolitan,KayeStacey,VickiSteinle,CharlesTwardy,ChrisWallaceand
theCRCPressreviewer.UffeKjærulff(Hugin),BrentBoerlage(Netica)andMarek
Druzdzel(GeNIe)helpeduswiththeirsoftwarepackages,whileKevinMurphyas-
sisted with the software package summary in Appendix B. Our research partners
in variousprojectsinclude: NathalieJitnah, ScottThomson,JasonCarlton, Darren
Boulton (Bayesianpoker); Ryan McGowan, Daniel Willis, Ian Brown(ambulation
monitoring); Kaye Stacey, Tali Boneh, Liz Sonenberg, Vicki Steinle, Tim Wilkin
(intelligent tutoring); Tali Boneh, Liz Sonenberg(Matilda); Lucas Hope (VE); In-
gridZukerman,RickyMcConachy(NAG);ChrisWallace,JulianNeil,LucasHope,
HelenArmstrong,CharlesTwardy,RodneyO’Donnell,HonghuaDai(causaldiscov-
ery); Russell Kennett, Chris Ryan (seabreezeprediction). Variouscolleagueshave
beeninfluentialinourintellectualdevelopmentleadingustothisendeavor;wewish
inparticulartoacknowledge: DavidAlbrecht,MikeBrady,TomDean,ColinHow-
son, Finn Jensen, Leslie Kaelbling, Uffe Kjærulff, Jak Kirman, Noretta Koertge,
RichardNeapolitan,StuartRussell, WesleySalmon,NeilThomason,IngridZuker-
man.WethankAlanDorinforcreatingourcoverimage.Ourdedicationreflectsour
indebtednesstotwoofthegreatteachers,JudeaPearlandChrisWallace. Finally,on
a personallevelAnn wouldlike to thankherparents, Paul, andRobbie, andKevin
wouldliketothankEmilyandSu.
© 2004 by Chapman & Hall/CRC Press LLC
About the Authors
KevinB.Korb,Ph.D.,earnedhisdoctorateinthephilosophyofscienceatIndiana
University (1992) working on the philosophical foundationsfor the automation of
Bayesianreasoning. SincethenhehaslecturedatMonashUniversityin Computer
Science,combininghisinterestsinphilosophyofscienceandartificialintelligencein
workonunderstandingandautomatinginductiveinference,theuseofMMLinlearn-
ingcausaltheories,artificialevolutionofcognitiveandsocialbehaviorandmodeling
Bayesianandhumanreasoningintheautomationofargumentation.
Ann E. Nicholson, D.Phil., did her undergraduatecomputer science studies at the
UniversityofMelbourneandherdoctorateintheroboticsresearchgroupatOxford
University(1992),workingondynamicBayesiannetworksfordiscretemonitoring.
ShethenspenttwoyearsatBrownUniversityasapost-doctoralresearchfellowbe-
foretakingupalecturingpositionatMonashUniversityinComputerScience. Her
generalresearchfocusisAImethodsforreasoningunderuncertainty,whilehercur-
rentresearchincludesknowledgeengineeringwithBayesiannetworks,applications
ofBayesiannetworksandusermodeling.
© 2004 by Chapman & Hall/CRC Press LLC
Contents
Part I PROBABILISTIC REASONING
Chapter 1 Bayesian Reasoning
1.1 Reasoning under uncertainty
1.2 UncertaintyinAI
1.3 Probability calculus
1.3.1 Conditional probability theorems
1.3.2 Variables
1.4 Interpretations of probability
1.5 Bayesian philosophy
1.5.1 Bayes’theorem
1.5.2 Betting and odds
1.5.3 Expected utility
1.5.4 Dutch books
1.5.5 Bayesianreasoningexamples
1.6 ThegoalofBayesianAI
1.7 AchievingBayesianAI
1.8 AreBayesiannetworksBayesian?
1.9 Summary
1.10 Bibliographicnotes
1.11 Technicalnotes
1.12 Problems
Chapter 2 Introducing Bayesian Networks
2.1 Introduction
2.2 Bayesiannetworkbasics
2.2.1 Nodesandvalues
2.2.2 Structure
2.2.3 Conditional probabilities
2.2.4 TheMarkovproperty
2.3 ReasoningwithBayesiannetworks
2.3.1 Typesofreasoning
2.3.2 Typesofevidence
2.3.3 Reasoningwithnumbers
2.4 UnderstandingBayesiannetworks
2.4.1 Representing the joint probability distribution
© 2004 by Chapman & Hall/CRC Press LLC
xii
2.4.2 Pearl’snetworkconstructionalgorithm
2.4.3 Compactness and node ordering
2.4.4 Conditionalindependence
2.4.5 d-separation
2.5 Moreexamples
2.5.1 Earthquake
2.5.2 Metastaticcancer
2.5.3 Asia
2.6 Summary
2.7 Bibliographicnotes
2.8 Problems
Chapter 3 Inference in Bayesian Networks
3.1 Introduction
3.2 Exactinferenceinchains
3.2.1 Two node network
3.2.2 Three node chain
3.3 Exactinferenceinpolytrees
3.3.1 KimandPearl’smessagepassingalgorithm
3.3.2 Messagepassingexample
3.3.3 Algorithmfeatures
3.4 Inferencewithuncertainevidence
3.4.1 Using a virtual node
3.4.2 Virtual nodes in the message passing algorithm
3.5 Exact inference in multiply-connected networks
3.5.1 Clustering methods
3.5.2 Junctiontree
3.6 Approximateinferencewithstochasticsimulation
3.6.1 Logicsampling
3.6.2 Likelihood weighting
3.6.3 MarkovChainMonteCarlo(MCMC)
3.6.4 Usingvirtualevidence
3.6.5 Assessingapproximateinferencealgorithms
3.7 Othercomputations
3.7.1 Beliefrevision
3.7.2 Probability of evidence
3.8 Causalinference
3.9 Summary
3.10 Bibliographicnotes
3.11 Problems
© 2004 by Chapman & Hall/CRC Press LLC
xiii
Chapter 4 Decision Networks
4.1 Introduction
4.2 Utilities
4.3 Decisionnetworkbasics
4.3.1 Nodetypes
4.3.2 Footballteamexample
4.3.3 Evaluatingdecisionnetworks
4.3.4 Informationlinks
4.3.5 Feverexample
4.3.6 Typesofactions
4.4 Sequentialdecisionmaking
4.4.1 Test-actioncombination
4.4.2 Realestateinvestmentexample
4.4.3 Evaluationusingadecisiontreemodel
4.4.4 Valueofinformation
4.4.5 Directevaluationofdecisionnetworks
4.5 DynamicBayesiannetworks
4.5.1 Nodes,structureandCPTs
4.5.2 Reasoning
4.5.3 InferencealgorithmsforDBNs
4.6 Dynamicdecisionnetworks
4.6.1 Mobile robot example
4.7 Summary
4.8 Bibliographicnotes
4.9 Problems
Chapter 5 Applications of Bayesian Networks
5.1 Introduction
5.2 AbriefsurveyofBNapplications
5.2.1 Typesofreasoning
5.2.2 BNstructuresformedicalproblems
5.2.3 Othermedicalapplications
5.2.4 Non-medicalapplications
5.3 Bayesianpoker
5.3.1 Five-cardstudpoker
5.3.2 Adecisionnetworkforpoker
5.3.3 Betting with randomization
5.3.4 Bluffing
5.3.5 Experimentalevaluation
5.4 Ambulationmonitoringandfalldetection
5.4.1 Thedomain
5.4.2 TheDBNmodel
5.4.3 Case-basedevaluation
5.4.4 Anextendedsensormodel
5.5 ANiceArgumentGenerator(NAG)
© 2004 by Chapman & Hall/CRC Press LLC
Description:Printed in the United States of America 1 2 3 4 5 6 7 8 9 0. Printed on . Helen Armstrong, Charles Twardy, Rodney O'Donnell, Honghua Dai (causal discov- We thank Alan Dorin for creating our cover image. been called, dominated AI research in the 1960s and 1970s, only losing its grip in.