Bayesian and non-Bayesian techniques applied to censored survival data with missing values Morten Nonboe Andersen Kongens Lyngby 2007 IMM-PHD-2007-179 Technical University of Denmark Informatics and Mathematical Modelling Building 321, DK-2800 Kongens Lyngby, Denmark Phone +45 45253351, Fax +45 45882673 [email protected] www.imm.dtu.dk IMM-PHD: ISSN 0909-3192 Summary This thesis is a comprehensive comparative study of survival analysis methods, in particular the application of the Cox Proportional Hazards (CPH) model to reallifedata: Adatasetwith48right-censored(endofstudy)patientssuffering from multiple myeloma, and the COpenhagen Stroke study (COST) database with 993 right-censored (10 year follow-up) stroke patients. The most frequently applied method, stepwise selection, is a variable selec- tion technique that fits a single model by searching for significant predictors of the survival time in terms of p-values. However, stepwise selection ignores the between-model uncertainty. This leads to biased and overconfident estimates. We compare stepwise selection to a more advanced approach, Bayesian Model Averaging (BMA), to average over all or a subset of models weighted by their posteriormodelprobabilities. Weshowhowtoidentifyasubsetofmodelsusing Occam’swindowsubsetselectionwithresultscomparabletoanaverageoverall models. We show that BMA has several advantages over stepwise selection. Using an average over models, we can evaluate the model uncertainty and obtain more reliable estimates of the risk factor coefficients. BMA also gives probabilistic evaluations of each risk factor, and we can ask questions such as: “What is the probability that this risk factor coefficient is non-zero, i.e. has an effect?” In stepwise selection, risk factors are either significant or not. We also show how to evaluate and compare the predictive power of competing models using the predictive log-score and a novel evaluation score, the predictive Z-score. We show that BMA improves the predictive power of our models. ii The CPH model is based on an assumption of proportional hazards. We im- plement two methods for validating this assumption. One can be used before and the other after a model has been fitted. We also show how to implement time-dependent variables and parameters to give a more general Cox regression (CR) model, and how to apply BMA on this model. Most real-life data sets have subjects where all values have not been recorded. Standard survival analysis methods cannot handle missing values, and a lot of valuable information is lost. We present three ways to address this problem: Combining BMA and variable selection, we propose a stepwise BMA method, where variables are removed by evaluating the probability of an effect. When weremovevariableswithmissingvalues,wereducethenumberofsubjectswith missing values, and significantly increase the size of the data set, leading to more accurate parameter estimates and increased predictive power. Bayesian Networks (BN) have been used in numerous contexts to infer missing values. We show that they are also useful for estimating the missing values in survival data sets. Having estimated the missing values, we apply BMA to the augmented data set with improved evaluation of the risk factors and increased predictive power. We compare several methods for learning the structure and the parameters of a network connecting the risk factors, and show that the best results are obtained using a structural Expectation Maximization (EM) algorithm that is able to handle missing values. In a final approach, we use a CR model for the failure time distribution, and place fully parametric distributions on the missing data mechanisms and the riskfactors. UsinganEMalgorithm, weiterativelyestimatemissingvaluesand model parameters. In a simulation, we show how the results of this method depend on the chosen parametric distributions, but that we obtain improved evaluation of risk factors and increased predictive power, when we use the BN structure to propose a distribution on the risk factors. We also propose an improvement to the original EM algorithm by substituting stepwise selection with BMA in the M-step, leading to improved parameter and missing value estimates and increased predictive power. Results suggest that survival time for stroke patients is lower for male patients, decreases with ageing, severity of stroke, presence of another disabling disease, diabetes, and intermittent claudication, or if the patient has previously experi- encedastroke. However,theeffectofstrokeseveritydecreaseswithtime. Some results also indicate that survival time decreases with the presence of atrial fibrillation, or if the admission body temperature is ≥ 37.0◦ C. Data showed positive evidence against an effect of hypertension, alcohol consumption, smok- ing habits, type of stroke, and the presence of an ischemic heart disease, when we adjusted for the possibility of the other risk factors. Resum´e Denne afhandling er et omfattende komparativt metodestudie med særligt hen- blikp˚aoverlevelsesanalyse,specieltanvendelsenafenCoxProportionalHazards model (CPH) p˚a virkelige data: Et datasæt best˚aende af 48 højre-censorerede (afslutningp˚astudiet)patientermedudbredtmyelomatose(knoglemarvskræft), og COpenhagen Stroke study (COST) databasen med 993 højre-censorerede (opfølgning efter 10˚ar) slagtilfælde patienter. Sædvanligvisanvendesstepwiseselectiontilatevaluere,vedhjælpafp-værdier, hvilken variabel, der vil forbedre modellen mest, hvis den til-/fravælges. Meto- den tager hensyn til usikkerheden p˚a parameterestimaterne, men ikke usikker- heden modellerne imellem. Dette medfører biased og overkonfidente estimater. VisammenlignermetodenmedBayesianModelAveraging(BMA)tilatberegne et gennemsnit over alle modeller eller en delmængde heraf. Hver model vægtes med modellens a posteriori sandsynlighed. Vi viser, hvordan man kan identifi- cere en delmængde af modeller ved hjælp af Occam’s window subset selection med resultater, der er sammenlignelige med et gennemsnit over alle modeller. Ved at benytte et gennemsnit over modeller kan vi evaluere modelusikkerhe- den og opn˚a mere p˚alidelige estimater af risikofaktorernes koefficienter. BMA giver ogs˚a en probabilistisk evaluering af den enkelte risikofaktor, der giver os mulighed for at stille spørgsm˚al som: “Hvad er sandsynligheden for, at koeffi- cientenfordennerisikofaktorernul,dvs.hareneffect?”. Viviserogs˚a,atBMA forbedrer modellens prædiktive evne evalueret ved hjælp af den prædiktive log- score og en ny score, den prædiktive Z-score. Vi beskriver desuden metoder til at validere CPH modellens antagelse om pro- portionale hazards og implementere tidsafhængige variable og parametre til at iv opn˚a en mere generel Cox regressionsmodel (CR). Endeligkanmangeoverlevelsesanalysemetoderikkeh˚andteremanglendeværdier, og dermed g˚ar store mængder af værdifuld information ofte tabt. Ved at an- vendeenkombinationafBMAogstepwiseselectionforesl˚arvienstepwiseBMA metode,hvorvariablefjernesp˚abaggrundafsandsynlighedenforeneffekt. N˚ar vi fjerner variable med manglende værdier, reducerer vi antallet af patienter, der har manglende værdier. Vi viser, at denne metode kan øge størrelsen af datasættet markant og føre til mere præcise parameter estimater og styrket prædiktionsevne. Vi demonstrerer desuden, hvordan Bayesianske Netværk (BN) kan anvendes til at estimere de manglende værdier, hvorefter vi anvender BMA p˚a det ud- videde datasæt og viser forbedringer i evalueringen af risikofaktorerne og øget prædiktionsevne. Vi sammenligner forskellige metoder til at lære strukturen og parametrene i det netværk, der forbinder risikofaktorerne og viser, at de bedste resultater opn˚as ved at benytte en strukturel Expectation Maximization (EM) algoritme. Endeliganvendesparametriskefordelingertilatmodelleresammenhængemellem risikofaktorerne og de mekanismer, der resulterer i manglende værdier, mens vi anvenderenCRmodeltilatmodellerefordelingenaflevetiderne. Vedatbenytte en EM algoritme kan vi skiftevis estimere parametre og manglende værdier og opn˚a forbedringer i evalueringen af risikofaktorerne samt øget prædiktionsevne ved at anvende BN strukturen til at modellere sammenhængen mellem risiko- faktorerne. Ved at erstatte stepwise selection med BMA i den originale algo- ritmesM-skridtvises,atvikanopn˚abedreestimaterafparametreogmanglende værdier samt en styrket prædiktionsevne. Resultaterne viser, at levetiden for slagtilfældepatienter er kortere for mænd, falder med alderen, slagtilfældets sværhedsgrad, tilstedeværelsen af anden in- validerende sygdom, sukkersyge og forbig˚aende krampe i benene, eller hvis pa- tiententidligereharhaftetslagtilfælde. Effektenafslagtilfældetssværhedsgrad aftager dog med tiden. Den forventede levetid falder muligvis ogs˚a med tilstedeværelsen af hjerteflim- mer, eller hvis patientens kropstemperatur er ≥ 37.0◦ C ved indlæggelse, men data kunne ikke entydigt p˚avise disse effekter. Endelig viste analyserne, at der ikke var bevis for en effekt af levetiden ved rygning, indtagelse af alkohol, højt blodtryk, typen af slagtilfælde eller tilstedeværelsen af en iskæmisk hjertesyg- dom, n˚ar vi korrigerede for de øvrige risikofaktorer. Preface ThisthesiswaspreparedatInformaticsandMathematicalModeling,theTechni- calUniversityofDenmarkinpartialfulfillmentoftherequirementsforacquiring the Ph.D. degree in engineering. The work was funded by the Technical University of Denmark and was super- vised by Associate Professor Ole Winther. The work commenced May 15, 2004 and was completed April 15, 2007. From January - September 2004, I studied under the supervision of Assistant Professor Nancy E. Reed at the University of Hawai’i. Lyngby, 15-04-2007 Morten Nonboe Andersen vi Publications Papers included in the thesis [B] M.N Andersen, K.K. Andersen, L.P. Kammersgaard, and T.S. Olsen. Sex Differences in Stroke Survival: 10-Year Follow-up of the Copenhagen Stroke Study Cohort. Journal of Stroke and Cerebrovascular Diseases, 2005: Vol. 14, No. 5 (September-October), pp 215-220. Other journal papers or conference contributions published during the preparation of the thesis • M.N. Andersen, K.K. Andersen, L.P. Kammersgaard, and T.S. Olsen. Gender Differences in Stroke Survival: 10-Year Follow-up of the Copen- hagen Stroke Study Cohort. 14’th European Stroke Conference. Bologna, 2005 (May 25-28). • H.G. Petersen, K.K. Andersen, M.N. Andersen, L.P. Kammersgaard, and T.S. Olsen. Body Mass Index (BMI) and survival after stroke. Joint World Congress on Stroke. Cape Town, South Africa, 2006 (October 26- 29). • M.N. Andersen, K.K. Andersen, H.G. Petersen, and T.S. Olsen. Using Bayesian statistics to account for model uncertainty in survival analysis. A study of risk factors in 25 839 patients with acute stroke. Joint World Congress on Stroke. Cape Town, South Africa, 2006 (October 26-29). viii • K.K. Andersen, T.S. Olsen, H.G. Petersen, and M.N. Andersen. On the importance of a stroke severity score in modelling mortality of stroke patients. Joint World Congress on Stroke. Cape Town, South Africa, 2006 (October 26-29). • K.K. Andersen, H.G. Petersen, M.N. Andersen, L.P. Kammersgaard, and T.S. Olsen. Stroke in diabetics: Frequency, clinical characteristics and survival. A 4-year follow-up study of 24 121 patients with acute stroke. JointWorldCongressonStroke. CapeTown,SouthAfrica,2006(October 26-29). • K.K. Andersen, L.P. Kammersgaard, H.G. Petersen, M.N. Andersen, and T.S. Olsen. Intracerebral hematomas versus infarction: Stroke severity andriskfactorprofile. ADanishnation-wideevaluationof25839patients with acute stroke. Joint World Congress on Stroke. Cape Town, South Africa, 2006 (October 26-29). • T.S. Olsen, K.K. Andersen, M.N. Andersen, and H.G. Petersen. Hemor- rhagic strokes in patients with atrial fibrillation: Frequency, clinical char- acteristics and prognosis. Joint World Congress on Stroke. Cape Town, South Africa, 2006 (October 26-29). • M.N. Andersen, K.K. Andersen, H.G. Petersen, and T.S. Olsen. Women survive stroke better than men. A study of gender-specific differences in survival of 25 839 patients with acute stroke. Joint World Congress on Stroke. Cape Town, South Africa, 2006 (October 26-29). • M.N.Andersen,R.Ø. Andersen,andK.Wheeler. FilteringinHybridDy- namicBayesianNetworks. InternationalConferenceonAcoustics,Speech, and Signal Processing. Montral. Canada, 2004 (May), pp 773-776.
Description: