ebook img

Bayesian analysis of item response models for binary data PDF

116 Pages·1996·3.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bayesian analysis of item response models for binary data

BAYESIANANALYSISOFITEMRESPONSEMODELSFORBINARYDATA By ATALANTAGHOSH ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1996 Tomyparentsandteachers ACKNOWLEDGEMENTS IwouldliketoexpressmysinceregratitudetoProfessorsMalayGhoshandAlan Agrestiforbeingmyadvisors. Withouttheirenormouspatience,encouragementand guidance, itwouldnothavebeenpossibletocompletethework. Iconsidermyself extremelyluckytogetthemasmydissertationadvisors. Iwouldliketothankmy friendsfortheirgreathelp,especiallyduringthefinalstageofthisdissertation. Also IwouldliketowholeheartedlythankmywifeSofiaPaulforherinvaluablesupport andhelpallthroughoutthework. iii TABLEOFCONTENTS ACKNOWLEDGEMENTS iii ABSTRACT vi CHAPTERS 1 INTRODUCTION 1 1.1 LiteratureReview 1 1.2 TopicofthisDissertation 6 2 AUNIFIEDBAYESIANANALYSISOFITEMRESPONSEMODELSFOR BINARYDATA 8 2.1 Introduction 8 2.2 ChoiceOfPriors 9 2.3 ImplementationOfBayesProcedures 23 2.4 AnalysisBasedonDataForPlacementTests 26 2.5 ExampleonMatchedPairsData 31 2.5.1 EffectofDiagonalElements 39 2.6 Uniformapproximationofimproperpriorsbyproperpriors 44 2.7 ConsistencyofMarginalMaximumLikelihoodEstimator 57 3 HIERARCHICALBAYESIANANALYSISOFITEMRESPONSEMODELS FORBINARYDATA 75 3.1 Introduction 75 3.2 BayesProcedureswithHierarchicalPriors 76 3.3 ImplementationOfBayesProcedures 81 3.4 AnExample 82 4 AUNIFORMBAYESIANANALYSISOFTWO-PARAMETERITEMRE- SPONSEMODELSFORBINARYDATA 86 4.1 Introduction 86 iv 4.2 ChoiceOfPriors 87 4.3 ImplementationOfBayesProcedures 94 4.4 AnExample 96 5 SUMMARYANDFUTURERESEARCH 101 BIBLIOGRAPHY 104 BIOGRAPHICALSKETCH 108 v AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillment oftheRequirementsfortheDegreeof DoctorofPhilosophy BAYESIANANALYSISOFITEMRESPONSEMODELSFORBINARYDATA By AtalantaGhosh December1996 Chairpersons: AlanAgresti MalayGhosh MajorDepartment: Statistics WepresentaunifiedBayesianapproachfortheanalysisofone-andtwo-parameter itemresponsemodels,withspecialemphasisonlogit,probit,andlog-loglinks. Nec- essaryandsufficientconditionsarefoundfortheproprietyoftheposteriorsunder improperpriorsforthesemodels. Bayesestimation is implemented usingMarkov Chain MonteCarlointegrationtechnique, andisillustratedwithanexamplefrom educational testing. Somerelationships between thefrequentist and the Bayesian procedurearealsodiscussed. vi CHAPTER 1 INTRODUCTION 1.1 LiteratureReview Itemresponsemodelsarewidelyusedfortheanalysisofpsychometricdata. Their origin can betraced back tomid-thirties andearly forties (cf. Richardson, 1936; Tucker, 1946). Asystematicdevelopmentofitemresponsetheoryfromtheclassical pointofviewowesmuchtothepioneeringworkofLord(1952,1953a,1953b),Rasch (1960,1961)andtheirassociates. Amongthemanynoteworthyrecentcontributions inthesamevein, wemayciteAndersen (1970, 1972, 1973), Bockand Lieberman (1970),MislevyandBock(1984),SwaminathanandGifford(1981),andHambleton andSwaminathan(1985). Tomotivateitemresponsemodels,considerasaspecificexample,abilitytestsor attitudetestswhereeachindividualanswersabatteryofquestions. LetX{jdenote theresponseoftheithindividualtothejthquestion (i= 1,...,n; j= 1,...,k). Associatedwiththezthindividual(orsubject)isasubjectparameter^thatexpresses thecapacity,abilityortheattitudeofthatindividualinagivencontext. However, thedistributionsofthe willdependnotonlyonQ{butalsoonsomeparameteraj where-aijrepresentsthedifficultylevelofquestionj. Itemresponseanalysismodels thedistributionofXtjtakingintoaccountbothQ{anda,(i=1,...,n;j=1,...,Jb). Forsimplicity,throughoutthisdissertationweconsideronlythecasewhentheXij arebinaryrandomvariables. Thisis,forexample,thesituationwhennexamineesare 1 2 answering "True/False" questions. Alternately,theexamineesmayanswermultiple choicequestionswhereeachansweriscodedas "correct" or "incorrect". Letpjj = P{Xij = 1) (i = 1,...,n ; j = 1,...,k), where 1 denotes a correct response. Itemresponsetheoryforbinaryresponseisbasedonmodelswhichexpresstheptjas functionsofcertainparameters. Thisdissertationconcentratesonone-andtwo-parameteritemresponsemodels. Aone-parameteritemresponsemodelinitsmostgeneralformisgivenby pij=F{6i+ai), (1.1.1) where F is a distribution function. This is referred to as a one-parameter item responsemodel,sinceasafunctionof9{therighthandsideof(1.1.1)hastheformof adistributionfunctionwithlocationparameter-cty ThefunctionF"1(orsometimes Fitself)iscalledalinkfunction. Thethreemostcommonlyusedlinkfunctionsare thelogit,probitandlog-loglinks. Logitandprobitlinksaresymmetric, whilethe log-loglinkisasymmetric. Alogitlinkisbasedonthelogisticdistributionfunction, namely The resulting one-parameter item response model is the celebrated Rasch model (Rasch, 1960, 1961). A probit link is based on thenormal distribution function. Alog-loglinkisbasedontheextremevaluedistributionfunction. Intheitemresponseliterature,the0,arereferredtoas "subjectability" param- eters, whiletheaj arereferredtoas "item" parameters. Despitethesimplicityof one-parameteritemresponsemodelsandinparticular,theoverwhelmingpopularity oftheRaschmodel (seeforexamplethecollectionofessays inFischerand Mole- naar,1995),thesemodelsareoftencriticizedonthegroundthattheyassumeallthe questionstohaveequalpowertodiscriminatebetween "good"and"poor"students, andthereforedonotinvolveanydiscriminationparametersinadditiontotheitem 3 parameters. Thisproblemisalleviatedbyintroducingtwo-parameteritemresponse modelsgivenby Pij=F(>yj9i+bj) (1.1.2) orequivalentlyby Pv=FhAh+ (bi=W)- (1-1-3) Thejjarereferredtoas"discrimination"parametersrangingbetween(0,oo)foreach j. Modelsofthistypearereferredtoastwo-parameteritemresponsemodels,since asafunctionof0j, hastheformofadistributionfunctionwithlocationparameter —a.jandscaleparameterl/7j. Onemaybeinterestedininferenceforthe0jorfortheojjorsimultaneouslyfor boththe6i andthea, inone-parameteritemresponsemodels. Similarlyfortwo- parameteritemresponsemodels,inferencemayinvolveoneormoreofthethreesets ofparameters {aj} and {7,-}. Ourdissertationwillprimarilyconcentrateon inferenceforthe {aj} inone-parametermodels andfor {7,,a,} intwo-parameter models. Weshallnowbrieflyreviewsomeoftheexistingestimationproceduresforone- andtwo-parameteritemresponsemodels. Classicalestimationforthe{a,}or{a,-,7^} usesmaximumlikelihoodestimationmethod. Amajordifficultythatarisesinthis contextisthatthemaximumlikelihoodestimators(MLE)oftheitemparametersare inconsistent. ThisisanexampleofthewellknownNeyman-Scottphenomenon,first notedbyNeymanandScott (1948). Theyprovedinthebalancedone-waynormal ANOVAmodelthatasthenumberofcellmeansgrowstoinfinity,theMLEofthe errorvarianceisinconsistent. Andersen (1970, 1972, 1973), inaseriesofarticles, hasdiscussedveryextensivelyfrequentistinferencefortheRaschmodel. Oneofhis findingsisthatwhenk=2,butn-»00,theMLEofax (ora2)isaninconsistent estimator. AproofoftheinconsistencyoftheMLEforgeneralkisrecentlygivenin Ghosh(1995). , 4 Andersen(1970)recommendsavoidingtheproblemofinconsistentMLE'sforthe RaschmodelbyfindingtheMLE'softheaj (j=1,...,k)conditionalonsufficient statisticsforthenuisanceparameters9i(i=1,...,n). Thisapproach,however,does notworkwhenseparatesufficientstatisticsdonotexistforthenuisanceparameters. Thisis, forinstance, evidencedintheprobitmodel,pi3 = +aj), <3>beingthe standardnormaldistributionfunction,wheresufficientstatisticsdonotexistforthe nuisanceparameters ...,#„). Infact,theonlyitemresponsemodelthatadmits nontrivialsufficient statisticsforthe6{ isthe Rasch model. Bock and Lieberman (1970) have advocated instead theuseofmarginalmaximum likelihood estimates ofthe aj (j = l,...,k) byassigningsome distribution to d\,...,Qn. Then inte- gratingoutwith respect to0\,...,9n, onefinds thejoint marginaldistribution of Xij(i=1,...,n; j=1,... k)whichinvolveonlya^,...,a*andtheparametersof thedistributionsofthe#j. Basedonthisdistribution, onefindstheMLE'softhe <*!,...,a*;, usuallyreferredtoasthemarginalMLE's. Similarlyfortwo-parameter modelsonecanemploymarginalmaximumlikelihoodestimationtechniqueforthe item parameters as well asdiscrimination parameters. In thiscase one finds the marginaldistributionofXij (i—1,...,n; j=1,...,k)involvingtheitemparame- tersax,...,afcand7i,..•,7jt- BockandAitkin(1981)proposedanEMalgorithmto obtainmarginalmaximumlikelihoodestimatesfortheseparametersinthecontext oftwo-parametermodels. Analternativeandattractiveestimationprocedureforitemresponsemodelsis theBayesianprocedure. Overtheyears,thisapproachhasreceivedconsiderableat- tention. However,eventheBayesianapproachadmitsvariationinactualuse. First, in aregularBayesian approach, inferenceisbasedonacompletely specified prior distributionforalltheunknownparameters. However, unlessoneusesfullynonin- formativepriors,suchprocedureswilllackrobustnessagainstmisspecifiedpriors. As analternative, onemayproceedbyestimatingsomeorallofthepriorparameters

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.