Basics of Algebra, Topology, and Differential Calculus Jean Gallier Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: [email protected] c Jean Gallier (cid:13) February 23, 2017 2 Contents 1 Introduction 11 2 Vector Spaces, Bases, Linear Maps 13 2.1 Groups, Rings, and Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Linear Independence, Subspaces . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 Bases of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5 Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.6 Quotient Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3 Matrices and Linear Maps 53 3.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 Haar Basis Vectors and a Glimpse at Wavelets . . . . . . . . . . . . . . . . 69 3.3 The Effect of a Change of Bases on Matrices . . . . . . . . . . . . . . . . . 86 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4 Direct Sums, The Dual Space, Duality 91 4.1 Sums, Direct Sums, Direct Products . . . . . . . . . . . . . . . . . . . . . . 91 4.2 The Dual Space E and Linear Forms . . . . . . . . . . . . . . . . . . . . . 106 (cid:3) 4.3 Hyperplanes and Linear Forms . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.4 Transpose of a Linear Map and of a Matrix . . . . . . . . . . . . . . . . . . 125 4.5 The Four Fundamental Subspaces . . . . . . . . . . . . . . . . . . . . . . . 134 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5 Determinants 139 5.1 Permutations, Signature of a Permutation . . . . . . . . . . . . . . . . . . . 139 5.2 Alternating Multilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3 Definition of a Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.4 Inverse Matrices and Determinants . . . . . . . . . . . . . . . . . . . . . . . 153 5.5 Systems of Linear Equations and Determinants . . . . . . . . . . . . . . . . 156 5.6 Determinant of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.7 The Cayley–Hamilton Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 158 5.8 Permanents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 3 4 CONTENTS 5.9 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6 Gaussian Elimination, LU, Cholesky, Echelon Form 167 6.1 Motivating Example: Curve Interpolation . . . . . . . . . . . . . . . . . . . 167 6.2 Gaussian Elimination and LU-Factorization . . . . . . . . . . . . . . . . . . 171 6.3 Gaussian Elimination of Tridiagonal Matrices . . . . . . . . . . . . . . . . . 197 6.4 SPD Matrices and the Cholesky Decomposition . . . . . . . . . . . . . . . . 200 6.5 Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 6.6 Transvections and Dilatations . . . . . . . . . . . . . . . . . . . . . . . . . . 222 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 7 Vector Norms and Matrix Norms 229 7.1 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 7.2 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 7.3 Condition Numbers of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 248 7.4 An Application of Norms: Inconsistent Linear Systems . . . . . . . . . . . . 257 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 8 Eigenvectors and Eigenvalues 261 8.1 Eigenvectors and Eigenvalues of a Linear Map . . . . . . . . . . . . . . . . . 261 8.2 Reduction to Upper Triangular Form . . . . . . . . . . . . . . . . . . . . . . 268 8.3 Location of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 9 Iterative Methods for Solving Linear Systems 277 9.1 Convergence of Sequences of Vectors and Matrices . . . . . . . . . . . . . . 277 9.2 Convergence of Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . 280 9.3 Methods of Jacobi, Gauss-Seidel, and Relaxation . . . . . . . . . . . . . . . 282 9.4 Convergence of the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 10 Euclidean Spaces 295 10.1 Inner Products, Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . 295 10.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 303 10.3 Linear Isometries (Orthogonal Transformations) . . . . . . . . . . . . . . . . 315 10.4 The Orthogonal Group, Orthogonal Matrices . . . . . . . . . . . . . . . . . 318 10.5 QR-Decomposition for Invertible Matrices . . . . . . . . . . . . . . . . . . . 320 10.6 Some Applications of Euclidean Geometry . . . . . . . . . . . . . . . . . . . 324 10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 11 QR-Decomposition for Arbitrary Matrices 327 11.1 Orthogonal Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 11.2 QR-Decomposition Using Householder Matrices . . . . . . . . . . . . . . . . 330 CONTENTS 5 11.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 12 Hermitian Spaces 337 12.1 Hermitian Spaces, Pre-Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . 337 12.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 346 12.3 Linear Isometries (Also Called Unitary Transformations) . . . . . . . . . . . 351 12.4 The Unitary Group, Unitary Matrices . . . . . . . . . . . . . . . . . . . . . 353 12.5 Orthogonal Projections and Involutions . . . . . . . . . . . . . . . . . . . . 356 12.6 Dual Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 12.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 13 Spectral Theorems 365 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 13.2 Normal Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 13.3 Self-Adjoint and Other Special Linear Maps . . . . . . . . . . . . . . . . . . 374 13.4 Normal and Other Special Matrices . . . . . . . . . . . . . . . . . . . . . . . 381 13.5 Conditioning of Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . 384 13.6 Rayleigh Ratios and the Courant-Fischer Theorem . . . . . . . . . . . . . . 387 13.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 14 The Geometry of Bilinear Forms; Witt’s Theorem 397 14.1 Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 14.2 Sesquilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 14.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 14.4 Adjoint of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 14.5 Isometries Associated with Sesquilinear Forms . . . . . . . . . . . . . . . . . 416 14.6 Totally Isotropic Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 14.7 Witt Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 14.8 Symplectic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 14.9 Orthogonal Groups and the Cartan–Dieudonn´e Theorem . . . . . . . . . . . 438 14.10 Witt’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 15 Isometries of Hermitian Spaces 451 15.1 The Cartan–Dieudonn´e Theorem, Hermitian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 15.2 Affine Isometries (Rigid Motions) . . . . . . . . . . . . . . . . . . . . . . . . 460 16 Introduction to The Finite Elements Method 465 16.1 A One-Dimensional Problem: Bending of a Beam . . . . . . . . . . . . . . . 465 16.2 A Two-Dimensional Problem: An Elastic Membrane . . . . . . . . . . . . . 475 16.3 Time-Dependent Boundary Problems . . . . . . . . . . . . . . . . . . . . . . 478 17 Singular Value Decomposition and Polar Form 487 6 CONTENTS 17.1 Singular Value Decomposition for Square Matrices . . . . . . . . . . . . . . 487 17.2 Singular Value Decomposition for Rectangular Matrices . . . . . . . . . . . 495 17.3 Ky Fan Norms and Schatten Norms . . . . . . . . . . . . . . . . . . . . . . 498 17.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 18 Applications of SVD and Pseudo-Inverses 501 18.1 Least Squares Problems and the Pseudo-Inverse . . . . . . . . . . . . . . . . 501 18.2 Properties of the Pseudo-Inverse . . . . . . . . . . . . . . . . . . . . . . . . 506 18.3 Data Compression and SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . 511 18.4 Principal Components Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . 512 18.5 Best Affine Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 519 18.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522 19 Quadratic Optimization Problems 525 19.1 Quadratic Optimization: The Positive Definite Case . . . . . . . . . . . . . 525 19.2 Quadratic Optimization: The General Case . . . . . . . . . . . . . . . . . . 533 19.3 Maximizing a Quadratic Function on the Unit Sphere . . . . . . . . . . . . 537 19.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 20 Schur Complements and Applications 545 20.1 Schur Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 20.2 SPD Matrices and Schur Complements . . . . . . . . . . . . . . . . . . . . . 547 20.3 SP Semidefinite Matrices and Schur Complements . . . . . . . . . . . . . . 549 21 Basics of Affine Geometry 551 21.1 Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551 21.2 Examples of Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 21.3 Chasles’s Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560 21.4 Affine Combinations, Barycenters . . . . . . . . . . . . . . . . . . . . . . . . 561 21.5 Affine Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564 21.6 Affine Independence and Affine Frames . . . . . . . . . . . . . . . . . . . . . 570 21.7 Affine Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575 21.8 Affine Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582 21.9 Affine Geometry: A Glimpse . . . . . . . . . . . . . . . . . . . . . . . . . . 584 21.10 Affine Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 21.11 Intersection of Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 589 22 Polynomials, Ideals and PID’s 593 22.1 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593 22.2 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594 22.3 Euclidean Division of Polynomials . . . . . . . . . . . . . . . . . . . . . . . 600 22.4 Ideals, PID’s, and Greatest Common Divisors . . . . . . . . . . . . . . . . . 602 22.5 Factorization and Irreducible Factors in K[X] . . . . . . . . . . . . . . . . . 610 CONTENTS 7 22.6 Roots of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 22.7 Polynomial Interpolation (Lagrange, Newton, Hermite) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621 23 Annihilating Polynomials; Primary Decomposition 629 23.1 Annihilating Polynomials and the Minimal Polynomial . . . . . . . . . . . . 629 23.2 Minimal Polynomials of Diagonalizable Linear Maps . . . . . . . . . . . . . 631 23.3 The Primary Decomposition Theorem . . . . . . . . . . . . . . . . . . . . . 637 23.4 Nilpotent Linear Maps and Jordan Form . . . . . . . . . . . . . . . . . . . . 646 24 UFD’s, Noetherian Rings, Hilbert’s Basis Theorem 653 24.1 Unique Factorization Domains (Factorial Rings) . . . . . . . . . . . . . . . . 653 24.2 The Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . 667 24.3 Noetherian Rings and Hilbert’s Basis Theorem . . . . . . . . . . . . . . . . 673 24.4 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677 25 Tensor Algebras and Symmetric Algebras 679 25.1 Linear Algebra Preliminaries: Dual Spaces and Pairings . . . . . . . . . . . 680 25.2 Tensors Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685 25.3 Bases of Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696 25.4 Some Useful Isomorphisms for Tensor Products . . . . . . . . . . . . . . . . 698 25.5 Duality for Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 702 25.6 Tensor Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706 25.7 Symmetric Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712 25.8 Bases of Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 717 25.9 Some Useful Isomorphisms for Symmetric Powers . . . . . . . . . . . . . . . 720 25.10 Duality for Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . 720 25.11 Symmetric Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723 26 Exterior Tensor Powers and Exterior Algebras 727 26.1 Exterior Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727 26.2 Bases of Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732 26.3 Some Useful Isomorphisms for Exterior Powers . . . . . . . . . . . . . . . . 735 26.4 Duality for Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 735 26.5 Exterior Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738 26.6 The Hodge -Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742 (cid:3) (cid:126) 26.7 Left and Right Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745 (cid:126) 26.8 Testing Decomposability . . . . . . . . . . . . . . . . . . . . . . . . . . . 754 (cid:126) 26.9 The Grassmann-Plu¨cker’s Equations and Grassmannians . . . . . . . . . 757 26.10 Vector-Valued Alternating Forms . . . . . . . . . . . . . . . . . . . . . . . . 761 27 Introduction to Modules; Modules over a PID 765 27.1 Modules over a Commutative Ring . . . . . . . . . . . . . . . . . . . . . . . 765 8 CONTENTS 27.2 Finite Presentations of Modules . . . . . . . . . . . . . . . . . . . . . . . . . 774 27.3 Tensor Products of Modules over a Commutative Ring . . . . . . . . . . . . 780 27.4 Torsion Modules over a PID; Primary Decomposition . . . . . . . . . . . . . 783 27.5 Finitely Generated Modules over a PID . . . . . . . . . . . . . . . . . . . . 789 27.6 Extension of the Ring of Scalars . . . . . . . . . . . . . . . . . . . . . . . . 805 28 Normal Forms; The Rational Canonical Form 811 28.1 The Torsion Module Associated With An Endomorphism . . . . . . . . . . 811 28.2 The Rational Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . 819 28.3 The Rational Canonical Form, Second Version . . . . . . . . . . . . . . . . . 826 28.4 The Jordan Form Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 827 28.5 The Smith Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830 29 Topology 843 29.1 Metric Spaces and Normed Vector Spaces . . . . . . . . . . . . . . . . . . . 843 29.2 Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849 29.3 Continuous Functions, Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 858 29.4 Connected Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865 29.5 Compact Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 29.6 Sequential Compactness in Metric Spaces . . . . . . . . . . . . . . . . . . . 885 29.7 Complete Metric Spaces and Compactness . . . . . . . . . . . . . . . . . . . 893 29.8 Continuous Linear and Multilinear Maps . . . . . . . . . . . . . . . . . . . . 899 29.9 Normed Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904 29.10 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904 30 A Detour On Fractals 905 30.1 Iterated Function Systems and Fractals . . . . . . . . . . . . . . . . . . . . 905 31 Differential Calculus 913 31.1 Directional Derivatives, Total Derivatives . . . . . . . . . . . . . . . . . . . 913 31.2 Jacobian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921 31.3 The Implicit and The Inverse Function Theorems . . . . . . . . . . . . . . . 926 31.4 Tangent Spaces and Differentials . . . . . . . . . . . . . . . . . . . . . . . . 930 31.5 Second-Order and Higher-Order Derivatives . . . . . . . . . . . . . . . . . . 931 31.6 Taylor’s formula, Faa` di Bruno’s formula . . . . . . . . . . . . . . . . . . . . 936 31.7 Vector Fields, Covariant Derivatives, Lie Brackets . . . . . . . . . . . . . . . 940 31.8 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942 32 Extrema of Real-Valued Functions 943 32.1 Local Extrema and Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . 943 32.2 Using Second Derivatives to Find Extrema . . . . . . . . . . . . . . . . . . . 953 32.3 Using Convexity to Find Extrema . . . . . . . . . . . . . . . . . . . . . . . 956 32.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966 CONTENTS 9 33 Newton’s Method and Its Generalizations 967 33.1 Newton’s Method for Real Functions of a Real Argument . . . . . . . . . . 967 33.2 Generalizations of Newton’s Method . . . . . . . . . . . . . . . . . . . . . . 968 33.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974 34 Basics of Hilbert Spaces 975 34.1 The Projection Lemma, Duality . . . . . . . . . . . . . . . . . . . . . . . . 975 34.2 Farkas–Minkowski Lemma in Hilbert Spaces . . . . . . . . . . . . . . . . . . 991 34.3 Total Orthogonal Families, Fourier Coefficients . . . . . . . . . . . . . . . . 993 34.4 The Hilbert Space l2(K) and the Riesz-Fischer Theorem . . . . . . . . . . . 1001 35 Appendix: Zorn’s Lemma; Some Applications 1011 35.1 Statement of Zorn’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011 35.2 Proof of the Existence of a Basis in a Vector Space . . . . . . . . . . . . . . 1012 35.3 Existence of Maximal Proper Ideals . . . . . . . . . . . . . . . . . . . . . . 1013 Bibliography 1013 10 CONTENTS