ebook img

Basics of algebra, topology, and differential calculus PDF

1021 Pages·2017·5.875 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Basics of algebra, topology, and differential calculus

Basics of Algebra, Topology, and Differential Calculus Jean Gallier Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: [email protected] c Jean Gallier (cid:13) February 23, 2017 2 Contents 1 Introduction 11 2 Vector Spaces, Bases, Linear Maps 13 2.1 Groups, Rings, and Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Linear Independence, Subspaces . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 Bases of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5 Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.6 Quotient Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3 Matrices and Linear Maps 53 3.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 Haar Basis Vectors and a Glimpse at Wavelets . . . . . . . . . . . . . . . . 69 3.3 The Effect of a Change of Bases on Matrices . . . . . . . . . . . . . . . . . 86 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4 Direct Sums, The Dual Space, Duality 91 4.1 Sums, Direct Sums, Direct Products . . . . . . . . . . . . . . . . . . . . . . 91 4.2 The Dual Space E and Linear Forms . . . . . . . . . . . . . . . . . . . . . 106 (cid:3) 4.3 Hyperplanes and Linear Forms . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.4 Transpose of a Linear Map and of a Matrix . . . . . . . . . . . . . . . . . . 125 4.5 The Four Fundamental Subspaces . . . . . . . . . . . . . . . . . . . . . . . 134 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5 Determinants 139 5.1 Permutations, Signature of a Permutation . . . . . . . . . . . . . . . . . . . 139 5.2 Alternating Multilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3 Definition of a Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.4 Inverse Matrices and Determinants . . . . . . . . . . . . . . . . . . . . . . . 153 5.5 Systems of Linear Equations and Determinants . . . . . . . . . . . . . . . . 156 5.6 Determinant of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.7 The Cayley–Hamilton Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 158 5.8 Permanents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 3 4 CONTENTS 5.9 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6 Gaussian Elimination, LU, Cholesky, Echelon Form 167 6.1 Motivating Example: Curve Interpolation . . . . . . . . . . . . . . . . . . . 167 6.2 Gaussian Elimination and LU-Factorization . . . . . . . . . . . . . . . . . . 171 6.3 Gaussian Elimination of Tridiagonal Matrices . . . . . . . . . . . . . . . . . 197 6.4 SPD Matrices and the Cholesky Decomposition . . . . . . . . . . . . . . . . 200 6.5 Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 6.6 Transvections and Dilatations . . . . . . . . . . . . . . . . . . . . . . . . . . 222 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 7 Vector Norms and Matrix Norms 229 7.1 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 7.2 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 7.3 Condition Numbers of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 248 7.4 An Application of Norms: Inconsistent Linear Systems . . . . . . . . . . . . 257 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 8 Eigenvectors and Eigenvalues 261 8.1 Eigenvectors and Eigenvalues of a Linear Map . . . . . . . . . . . . . . . . . 261 8.2 Reduction to Upper Triangular Form . . . . . . . . . . . . . . . . . . . . . . 268 8.3 Location of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 9 Iterative Methods for Solving Linear Systems 277 9.1 Convergence of Sequences of Vectors and Matrices . . . . . . . . . . . . . . 277 9.2 Convergence of Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . 280 9.3 Methods of Jacobi, Gauss-Seidel, and Relaxation . . . . . . . . . . . . . . . 282 9.4 Convergence of the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 10 Euclidean Spaces 295 10.1 Inner Products, Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . 295 10.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 303 10.3 Linear Isometries (Orthogonal Transformations) . . . . . . . . . . . . . . . . 315 10.4 The Orthogonal Group, Orthogonal Matrices . . . . . . . . . . . . . . . . . 318 10.5 QR-Decomposition for Invertible Matrices . . . . . . . . . . . . . . . . . . . 320 10.6 Some Applications of Euclidean Geometry . . . . . . . . . . . . . . . . . . . 324 10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 11 QR-Decomposition for Arbitrary Matrices 327 11.1 Orthogonal Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 11.2 QR-Decomposition Using Householder Matrices . . . . . . . . . . . . . . . . 330 CONTENTS 5 11.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 12 Hermitian Spaces 337 12.1 Hermitian Spaces, Pre-Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . 337 12.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 346 12.3 Linear Isometries (Also Called Unitary Transformations) . . . . . . . . . . . 351 12.4 The Unitary Group, Unitary Matrices . . . . . . . . . . . . . . . . . . . . . 353 12.5 Orthogonal Projections and Involutions . . . . . . . . . . . . . . . . . . . . 356 12.6 Dual Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 12.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 13 Spectral Theorems 365 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 13.2 Normal Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 13.3 Self-Adjoint and Other Special Linear Maps . . . . . . . . . . . . . . . . . . 374 13.4 Normal and Other Special Matrices . . . . . . . . . . . . . . . . . . . . . . . 381 13.5 Conditioning of Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . 384 13.6 Rayleigh Ratios and the Courant-Fischer Theorem . . . . . . . . . . . . . . 387 13.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 14 The Geometry of Bilinear Forms; Witt’s Theorem 397 14.1 Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 14.2 Sesquilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 14.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 14.4 Adjoint of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 14.5 Isometries Associated with Sesquilinear Forms . . . . . . . . . . . . . . . . . 416 14.6 Totally Isotropic Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 14.7 Witt Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 14.8 Symplectic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 14.9 Orthogonal Groups and the Cartan–Dieudonn´e Theorem . . . . . . . . . . . 438 14.10 Witt’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 15 Isometries of Hermitian Spaces 451 15.1 The Cartan–Dieudonn´e Theorem, Hermitian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 15.2 Affine Isometries (Rigid Motions) . . . . . . . . . . . . . . . . . . . . . . . . 460 16 Introduction to The Finite Elements Method 465 16.1 A One-Dimensional Problem: Bending of a Beam . . . . . . . . . . . . . . . 465 16.2 A Two-Dimensional Problem: An Elastic Membrane . . . . . . . . . . . . . 475 16.3 Time-Dependent Boundary Problems . . . . . . . . . . . . . . . . . . . . . . 478 17 Singular Value Decomposition and Polar Form 487 6 CONTENTS 17.1 Singular Value Decomposition for Square Matrices . . . . . . . . . . . . . . 487 17.2 Singular Value Decomposition for Rectangular Matrices . . . . . . . . . . . 495 17.3 Ky Fan Norms and Schatten Norms . . . . . . . . . . . . . . . . . . . . . . 498 17.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 18 Applications of SVD and Pseudo-Inverses 501 18.1 Least Squares Problems and the Pseudo-Inverse . . . . . . . . . . . . . . . . 501 18.2 Properties of the Pseudo-Inverse . . . . . . . . . . . . . . . . . . . . . . . . 506 18.3 Data Compression and SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . 511 18.4 Principal Components Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . 512 18.5 Best Affine Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 519 18.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522 19 Quadratic Optimization Problems 525 19.1 Quadratic Optimization: The Positive Definite Case . . . . . . . . . . . . . 525 19.2 Quadratic Optimization: The General Case . . . . . . . . . . . . . . . . . . 533 19.3 Maximizing a Quadratic Function on the Unit Sphere . . . . . . . . . . . . 537 19.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 20 Schur Complements and Applications 545 20.1 Schur Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 20.2 SPD Matrices and Schur Complements . . . . . . . . . . . . . . . . . . . . . 547 20.3 SP Semidefinite Matrices and Schur Complements . . . . . . . . . . . . . . 549 21 Basics of Affine Geometry 551 21.1 Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551 21.2 Examples of Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 21.3 Chasles’s Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560 21.4 Affine Combinations, Barycenters . . . . . . . . . . . . . . . . . . . . . . . . 561 21.5 Affine Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564 21.6 Affine Independence and Affine Frames . . . . . . . . . . . . . . . . . . . . . 570 21.7 Affine Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575 21.8 Affine Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582 21.9 Affine Geometry: A Glimpse . . . . . . . . . . . . . . . . . . . . . . . . . . 584 21.10 Affine Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 21.11 Intersection of Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 589 22 Polynomials, Ideals and PID’s 593 22.1 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593 22.2 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594 22.3 Euclidean Division of Polynomials . . . . . . . . . . . . . . . . . . . . . . . 600 22.4 Ideals, PID’s, and Greatest Common Divisors . . . . . . . . . . . . . . . . . 602 22.5 Factorization and Irreducible Factors in K[X] . . . . . . . . . . . . . . . . . 610 CONTENTS 7 22.6 Roots of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 22.7 Polynomial Interpolation (Lagrange, Newton, Hermite) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621 23 Annihilating Polynomials; Primary Decomposition 629 23.1 Annihilating Polynomials and the Minimal Polynomial . . . . . . . . . . . . 629 23.2 Minimal Polynomials of Diagonalizable Linear Maps . . . . . . . . . . . . . 631 23.3 The Primary Decomposition Theorem . . . . . . . . . . . . . . . . . . . . . 637 23.4 Nilpotent Linear Maps and Jordan Form . . . . . . . . . . . . . . . . . . . . 646 24 UFD’s, Noetherian Rings, Hilbert’s Basis Theorem 653 24.1 Unique Factorization Domains (Factorial Rings) . . . . . . . . . . . . . . . . 653 24.2 The Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . 667 24.3 Noetherian Rings and Hilbert’s Basis Theorem . . . . . . . . . . . . . . . . 673 24.4 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677 25 Tensor Algebras and Symmetric Algebras 679 25.1 Linear Algebra Preliminaries: Dual Spaces and Pairings . . . . . . . . . . . 680 25.2 Tensors Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685 25.3 Bases of Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696 25.4 Some Useful Isomorphisms for Tensor Products . . . . . . . . . . . . . . . . 698 25.5 Duality for Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 702 25.6 Tensor Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706 25.7 Symmetric Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712 25.8 Bases of Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 717 25.9 Some Useful Isomorphisms for Symmetric Powers . . . . . . . . . . . . . . . 720 25.10 Duality for Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . 720 25.11 Symmetric Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723 26 Exterior Tensor Powers and Exterior Algebras 727 26.1 Exterior Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727 26.2 Bases of Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732 26.3 Some Useful Isomorphisms for Exterior Powers . . . . . . . . . . . . . . . . 735 26.4 Duality for Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 735 26.5 Exterior Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738 26.6 The Hodge -Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742 (cid:3) (cid:126) 26.7 Left and Right Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745 (cid:126) 26.8 Testing Decomposability . . . . . . . . . . . . . . . . . . . . . . . . . . . 754 (cid:126) 26.9 The Grassmann-Plu¨cker’s Equations and Grassmannians . . . . . . . . . 757 26.10 Vector-Valued Alternating Forms . . . . . . . . . . . . . . . . . . . . . . . . 761 27 Introduction to Modules; Modules over a PID 765 27.1 Modules over a Commutative Ring . . . . . . . . . . . . . . . . . . . . . . . 765 8 CONTENTS 27.2 Finite Presentations of Modules . . . . . . . . . . . . . . . . . . . . . . . . . 774 27.3 Tensor Products of Modules over a Commutative Ring . . . . . . . . . . . . 780 27.4 Torsion Modules over a PID; Primary Decomposition . . . . . . . . . . . . . 783 27.5 Finitely Generated Modules over a PID . . . . . . . . . . . . . . . . . . . . 789 27.6 Extension of the Ring of Scalars . . . . . . . . . . . . . . . . . . . . . . . . 805 28 Normal Forms; The Rational Canonical Form 811 28.1 The Torsion Module Associated With An Endomorphism . . . . . . . . . . 811 28.2 The Rational Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . 819 28.3 The Rational Canonical Form, Second Version . . . . . . . . . . . . . . . . . 826 28.4 The Jordan Form Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 827 28.5 The Smith Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830 29 Topology 843 29.1 Metric Spaces and Normed Vector Spaces . . . . . . . . . . . . . . . . . . . 843 29.2 Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849 29.3 Continuous Functions, Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 858 29.4 Connected Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865 29.5 Compact Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 29.6 Sequential Compactness in Metric Spaces . . . . . . . . . . . . . . . . . . . 885 29.7 Complete Metric Spaces and Compactness . . . . . . . . . . . . . . . . . . . 893 29.8 Continuous Linear and Multilinear Maps . . . . . . . . . . . . . . . . . . . . 899 29.9 Normed Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904 29.10 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904 30 A Detour On Fractals 905 30.1 Iterated Function Systems and Fractals . . . . . . . . . . . . . . . . . . . . 905 31 Differential Calculus 913 31.1 Directional Derivatives, Total Derivatives . . . . . . . . . . . . . . . . . . . 913 31.2 Jacobian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921 31.3 The Implicit and The Inverse Function Theorems . . . . . . . . . . . . . . . 926 31.4 Tangent Spaces and Differentials . . . . . . . . . . . . . . . . . . . . . . . . 930 31.5 Second-Order and Higher-Order Derivatives . . . . . . . . . . . . . . . . . . 931 31.6 Taylor’s formula, Faa` di Bruno’s formula . . . . . . . . . . . . . . . . . . . . 936 31.7 Vector Fields, Covariant Derivatives, Lie Brackets . . . . . . . . . . . . . . . 940 31.8 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942 32 Extrema of Real-Valued Functions 943 32.1 Local Extrema and Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . 943 32.2 Using Second Derivatives to Find Extrema . . . . . . . . . . . . . . . . . . . 953 32.3 Using Convexity to Find Extrema . . . . . . . . . . . . . . . . . . . . . . . 956 32.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966 CONTENTS 9 33 Newton’s Method and Its Generalizations 967 33.1 Newton’s Method for Real Functions of a Real Argument . . . . . . . . . . 967 33.2 Generalizations of Newton’s Method . . . . . . . . . . . . . . . . . . . . . . 968 33.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974 34 Basics of Hilbert Spaces 975 34.1 The Projection Lemma, Duality . . . . . . . . . . . . . . . . . . . . . . . . 975 34.2 Farkas–Minkowski Lemma in Hilbert Spaces . . . . . . . . . . . . . . . . . . 991 34.3 Total Orthogonal Families, Fourier Coefficients . . . . . . . . . . . . . . . . 993 34.4 The Hilbert Space l2(K) and the Riesz-Fischer Theorem . . . . . . . . . . . 1001 35 Appendix: Zorn’s Lemma; Some Applications 1011 35.1 Statement of Zorn’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011 35.2 Proof of the Existence of a Basis in a Vector Space . . . . . . . . . . . . . . 1012 35.3 Existence of Maximal Proper Ideals . . . . . . . . . . . . . . . . . . . . . . 1013 Bibliography 1013 10 CONTENTS

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.