Basic Theory of Affine Group Schemes J.S. Milne Version1.00 March11,2012 This is a modern exposition of the basic theory of affine group schemes. Although the emphasis is on affine group schemes of finite type over a field, we also discuss more gen- eral objects: affine group schemes not of finite type; base rings not fields; affine monoids not groups; group schemes not affine, affine supergroup schemes (very briefly); quantum groups(evenmorebriefly). “Basic”meansthatwedonotinvestigatethedetailedstructure ofreductivegroupsusingrootdataexceptinthefinalsurveychapter(whichisnotyetwrit- ten). Prerequisiteshavebeenheldtoaminimum: allthereaderreallyneedsisaknowledge ofsomebasiccommutativealgebraandalittleofthelanguageofalgebraicgeometry. BibTeXinformation: @misc{milneAGS, author={Milne, James S.}, title={Basic Theory of Affine Group Schemes}, year={2012}, note={Available at www.jmilne.org/math/} } v1.00 March11,2012,275pages. Pleasesendcommentsandcorrectionstomeattheaddressonmywebsite http://www.jmilne.org/math/. The photo is of the famous laughing Buddha on The Peak That Flew Here, Hangzhou, Zhejiang,China. Copyright(cid:13)c 2012J.S.Milne. Singlepapercopiesfornoncommercialpersonalusemaybemadewithoutexplicitpermis- sionfromthecopyrightholder. Table of Contents TableofContents 3 I Definitionofanaffinegroup 17 1 Motivatingdiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 Somecategorytheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Affinegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 Affinemonoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 Affinesupergroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 II AffineGroupsandHopfAlgebras 29 1 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 Coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Thedualityofalgebrasandcoalgebras . . . . . . . . . . . . . . . . . . . . 31 4 Bi-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 AffinegroupsandHopfalgebras . . . . . . . . . . . . . . . . . . . . . . . 34 6 Abstractrestatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7 Commutativeaffinegroups . . . . . . . . . . . . . . . . . . . . . . . . . . 36 8 Quantumgroups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 III AffineGroupsandGroupSchemes 41 1 Thespectrumofaring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2 Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3 Affinegroupsasaffinegroupschemes . . . . . . . . . . . . . . . . . . . . 44 4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 IV Examples 47 1 Examplesofaffinegroups . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2 Examplesofhomomorphisms . . . . . . . . . . . . . . . . . . . . . . . . 54 3 Appendix: Arepresentabilitycriterion . . . . . . . . . . . . . . . . . . . . 54 V SomeBasicConstructions 57 1 Productsofaffinegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2 Fibredproductsofaffinegroups . . . . . . . . . . . . . . . . . . . . . . . 57 3 Limitsofaffinegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3 4 Extensionofthebasering(extensionofscalars) . . . . . . . . . . . . . . . 59 5 Restrictionofthebasering(Weilrestrictionofscalars) . . . . . . . . . . . 60 6 Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7 Galoisdescentofaffinegroups . . . . . . . . . . . . . . . . . . . . . . . . 67 8 TheGreenbergfunctor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 VI Affinegroupsoverfields 71 1 Affinek-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2 Schemesalgebraicoverafield . . . . . . . . . . . . . . . . . . . . . . . . 71 3 Algebraicgroupsasgroupsinthecategoryofaffinealgebraicschemes . . . 73 4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5 Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6 Reducedalgebraicgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7 Smoothalgebraicschemes . . . . . . . . . . . . . . . . . . . . . . . . . . 77 8 Smoothalgebraicgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 9 Algebraicgroupsincharacteristiczeroaresmooth(Cartier’stheorem) . . . 79 10 Smoothnessincharacteristicp¤0 . . . . . . . . . . . . . . . . . . . . . . 81 11 Appendix: ThefaithfulflatnessofHopfalgebras . . . . . . . . . . . . . . 82 VII GroupTheory: SubgroupsandQuotientGroups. 87 1 Acriteriontobeanisomorphism . . . . . . . . . . . . . . . . . . . . . . . 87 2 Injectivehomomorphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3 Affinesubgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4 Kernelsofhomomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5 Densesubgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6 Normalizers;centralizers;centres. . . . . . . . . . . . . . . . . . . . . . . 97 7 Quotientgroups;surjectivehomomorphisms . . . . . . . . . . . . . . . . . 100 8 Existenceofquotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 9 Semidirectproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 10 Smoothalgebraicgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 11 Algebraicgroupsassheaves . . . . . . . . . . . . . . . . . . . . . . . . . 106 12 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 VIII RepresentationsofAffineGroups 111 1 Finitegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 2 Definitionofarepresentation . . . . . . . . . . . . . . . . . . . . . . . . . 112 3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4 Comodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5 Thecategoryofcomodules . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6 Representationsandcomodules . . . . . . . . . . . . . . . . . . . . . . . . 118 7 ThecategoryofrepresentationsofG . . . . . . . . . . . . . . . . . . . . . 123 8 Affinegroupsareinverselimitsofalgebraicgroups . . . . . . . . . . . . . 123 9 Algebraicgroupsadmitfinite-dimensionalfaithfulrepresentations . . . . . 125 10 Theregularrepresentationcontainsall . . . . . . . . . . . . . . . . . . . . 126 11 EveryfaithfulrepresentationgeneratesRep.G/ . . . . . . . . . . . . . . . 127 12 Stabilizersofsubspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4 13 Chevalley’stheorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 14 Sub-coalgebrasandsubcategories . . . . . . . . . . . . . . . . . . . . . . 133 15 Quotientgroupsandsubcategories . . . . . . . . . . . . . . . . . . . . . . 134 16 Charactersandeigenspaces . . . . . . . . . . . . . . . . . . . . . . . . . . 134 17 Everynormalaffinesubgroupisakernel . . . . . . . . . . . . . . . . . . . 136 18 VariantoftheproofofthekeyLemma17.4 . . . . . . . . . . . . . . . . . 138 19 ApplicationsofCorollary17.6 . . . . . . . . . . . . . . . . . . . . . . . . 138 IX GroupTheory: theIsomorphismTheorems 141 1 Reviewofabstractgrouptheory . . . . . . . . . . . . . . . . . . . . . . . 141 2 Theexistenceofquotients . . . . . . . . . . . . . . . . . . . . . . . . . . 142 3 Thehomomorphismtheorem . . . . . . . . . . . . . . . . . . . . . . . . . 143 4 Theisomorphismtheorem . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5 Thecorrespondencetheorem . . . . . . . . . . . . . . . . . . . . . . . . . 145 6 TheSchreierrefinementtheorem . . . . . . . . . . . . . . . . . . . . . . . 146 7 Thecategoryofcommutativealgebraicgroups . . . . . . . . . . . . . . . . 148 8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 X CategoriesofRepresentations(TannakaDuality) 151 1 Recoveringagroupfromitsrepresentations . . . . . . . . . . . . . . . . . 151 2 ApplicationtoJordandecompositions . . . . . . . . . . . . . . . . . . . . 154 3 Characterizationsofcategoriesofrepresentations . . . . . . . . . . . . . . 159 4 Homomorphismsandfunctors . . . . . . . . . . . . . . . . . . . . . . . . 166 XI TheLieAlgebraofanAffineGroup 169 1 DefinitionofaLiealgebra . . . . . . . . . . . . . . . . . . . . . . . . . . 169 2 Theisomorphismtheorems . . . . . . . . . . . . . . . . . . . . . . . . . . 170 3 TheLiealgebraofanaffinegroup . . . . . . . . . . . . . . . . . . . . . . 171 4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 5 DescriptionofLie.G/intermsofderivations . . . . . . . . . . . . . . . . 176 6 Extensionofthebasefield . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7 TheadjointmapAdWG !Aut.g/ . . . . . . . . . . . . . . . . . . . . . . 178 8 Firstdefinitionofthebracket . . . . . . . . . . . . . . . . . . . . . . . . . 179 9 Seconddefinitionofthebracket . . . . . . . . . . . . . . . . . . . . . . . 179 10 ThefunctorLiepreservesfibredproducts . . . . . . . . . . . . . . . . . . 180 11 CommutativeLiealgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 182 12 Normalsubgroupsandideals . . . . . . . . . . . . . . . . . . . . . . . . . 182 13 AlgebraicLiealgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 14 Theexponentialnotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 15 Arbitrarybaserings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 16 MoreontherelationbetweenalgebraicgroupsandtheirLiealgebras . . . . 185 XII FiniteAffineGroups 191 1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 2 E´taleaffinegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 3 Finiteflataffinep-groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 4 Cartierduality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5 XIII TheConnectedComponentsofanAlgebraicGroup 203 1 Idempotentsandconnectedcomponents . . . . . . . . . . . . . . . . . . . 203 2 E´talesubalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 3 Algebraicgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 4 Affinegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 6 Whereweare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 XIV GroupsofMultiplicativeType;Tori 215 1 Group-likeelements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 2 Thecharactersofanaffinegroup . . . . . . . . . . . . . . . . . . . . . . . 216 3 TheaffinegroupD.M/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 4 Diagonalizablegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 5 Groupsofmultiplicativetype . . . . . . . . . . . . . . . . . . . . . . . . . 223 6 Rigidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 7 Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 8 Groupschemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 XV UnipotentAffineGroups 231 1 Preliminariesfromlinearalgebra . . . . . . . . . . . . . . . . . . . . . . . 231 2 Unipotentaffinegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 3 Unipotentaffinegroupsincharacteristiczero . . . . . . . . . . . . . . . . 237 4 Groupschemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 XVI SolvableAffineGroups 241 1 Trigonalizableaffinegroups . . . . . . . . . . . . . . . . . . . . . . . . . 241 2 Commutativealgebraicgroups . . . . . . . . . . . . . . . . . . . . . . . . 243 3 Thederivedgroupofanalgebraicgroup . . . . . . . . . . . . . . . . . . . 246 4 Solvablealgebraicgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 5 Structureofsolvablegroups . . . . . . . . . . . . . . . . . . . . . . . . . 251 6 Splitsolvablegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 7 Toriinsolvablegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 XVII TheStructureofAlgebraicGroups 255 1 Radicalsandunipotentradicals . . . . . . . . . . . . . . . . . . . . . . . . 255 2 Definitionofsemisimpleandreductivegroups . . . . . . . . . . . . . . . . 256 3 Thecanonicalfiltrationonanalgebraicgroup . . . . . . . . . . . . . . . . 258 4 Thestructureofsemisimplegroups . . . . . . . . . . . . . . . . . . . . . . 259 5 Thestructureofreductivegroups . . . . . . . . . . . . . . . . . . . . . . . 261 6 Pseudoreductivegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 7 PropertiesofG versusthoseofRep .G/: asummary . . . . . . . . . . . . 265 k XVIIIBeyondthebasics 267 Bibliography 269 Index 273 6 Preface For one who attempts to unravel the story, the problems are as perplexing as a mass of hemp withathousandlooseends. DreamoftheRedChamber,TsaoHsueh-Chin. Algebraicgroupsaregroupsdefinedbypolynomials. Thosethatweshallbeconcerned with in this book can all be realized as groups of matrices. For example, the group of matricesofdeterminant1isanalgebraicgroup, asistheorthogonalgroupofasymmetric bilinear form. The classification of algebraic groups and the elucidation of their structure were among the great achievements of twentieth century mathematics (Borel, Chevalley, Titsandothers,buildingontheworkofthepioneersonLiegroups). Algebraicgroupsare used in most branches of mathematics, and since the famous work of Hermann Weyl in the 1920s they have also played a vital role in quantum mechanics and other branches of physics(usuallyasLiegroups). The goal of the present work is to provide a modern exposition of the basic theory of algebraic groups. It has been clear for fifty years, that in the definition of an algebraic group, the coordinate ring should be allowed to have nilpotent elements,1 but the standard expositions2 donotallowthis.3 Whatwecallanaffinealgebraicgroupisusuallycalledan affinegroupschemeoffinitetype. Inrecentyears,thetannakianduality4betweenalgebraic groupsandtheircategoriesofrepresentationshascometoplayaroleinthetheoryofalge- braic groups similar to that of Pontryagin duality in the theory of locally compact abelian groups. Weincorporatethispointofview. Let k be a field. Our approach to affine group schemes is eclectic.5 There are three mainwaysviewingaffinegroupschemesoverk: ˘ asrepresentablefunctorsfromthecategoryofk-algebrastogroups; ˘ ascommutativeHopfalgebrasoverk; ˘ asgroupsinthecategoryofschemesoverk. Allthreepointsofviewareimportant: thefirstisthemostelementaryandnatural;thesec- ondleadstonaturalgeneralizations,forexample,affinegroupschemesinatensorcategory and quantum groups; and the third allows one to apply algebraic geometry and to realize 1See,forexample,Cartier1962. WithoutnilpotentsthecentreofSLp incharacteristicp isvisibleonly through its Lie algebra. Moreover, the standard isomorphism theorems fail (IX, 4.6), and so the intuition provided by group theory is unavailable. While it is true that in characteristic zero all algebraic groups are reduced,thisisatheoremthatcanonlybestatedwhennilpotentsareallowed. 2TheonlyexceptionsIknowofareDemazureandGabriel1970,Waterhouse1979,andSGA3. 3Worse, much of the expository literature is based, in spirit if not in fact, on the algebraic geometry of Weil’sFoundations(Weil1962).Thusanalgebraicgroupoverkisdefinedtobeanalgebraicgroupoversome largealgebraicallyclosedfieldtogetherwithak-structure. Thisleadstoaterminologyinconflictwiththatof modernalgebraicgeometry,inwhich,forexample,thekernelofahomomorphismofalgebraicgroupsovera fieldkneednotbeanalgebraicgroupoverk. Moreover,itpreventsthetheoryofsplitreductivegroupsbeing developedintrinsicallyoverthebasefield. When Borel first introduced algebraic geometry into the study of algebraic groups in the 1950s, Weil’s foundationsweretheyonlyonesavailabletohim.WhenhewrotehisinfluentialbookBorel1969,hepersisted inusingWeil’sapproachtoalgebraicgeometry,andsubsequentauthorshavefollowedhim. 4Strictly,thisshouldbecalledthe“dualityofTannaka,Krein,Milman,Hochschild,Grothendieck,Saave- draRivano,Deligne,etal.,”but“tannakianduality”isshorter. InhisRe´coltesetSemailles,1985-86,18.3.2, Grothendieckarguesthat“Galois-Poincare´”wouldbemoreappropriatethan“Tannaka”. 5Eclectic: Designating, of, or belonging to a class of ancient philosophers who selected from various schoolsofthoughtsuchdoctrinesaspleasedthem.(OED). 7 affinegroupschemesasexamplesofgroupsinthecategoryofallschemes. Weemphasize thefirstpointofview,butmakeuseofallthree. Wealsouseafourth: affinegroupschemes aretheTannakadualsofcertaintensorcategories. TERMINOLOGY For readers familiar with the old terminology, as used for example in Borel 1969, 1991, we point out some differences with our terminology, which is based on that of modern (post-1960)algebraicgeometry. ˘ Weallowourringstohavenilpotents,i.e.,wedon’trequirethatouralgebraicgroups bereduced. ˘ ForanalgebraicgroupG overk andanextensionfieldK, G.K/denotesthepoints of G with coordinates in K and G denotes the algebraic group over K obtained K fromG byextensionofthebasefield. ˘ We do not identify an algebraic group G with its k-points G.k/, even when the ground field k is algebraically closed. Thus, a subgroup of an algebraic group G is analgebraicsubgroup,notanabstractsubgroupofG.k/. ˘ An algebraic group G over a field k is intrinsically an object over k, and not an object over some algebraically closed field together with a k-structure. Thus, for example,ahomomorphismofalgebraicgroupsoverk istrulyahomomorphismover k,andnotoversomelargealgebraicallyclosedfield. Inparticular,thekernelofsuch a homomorphism is an algebraic subgroup over k. Also, we say that an algebraic group over k is simple, split, etc. when it simple, split, etc. as an algebraic group over k, not over some large algebraically closed field. When we want to say that G is simple over k and remains simple over all fields containing k, we say that G is geometrically(orabsolutely)simple. Beyonditsgreatersimplicityanditsconsistencywiththeterminologyofmodernalgebraic geometry, there is another reason for replacing the old terminology with the new: for the studyofgroupschemesoverbasesotherthanfieldsthereisnooldterminology. Notations;terminology We use the standard (Bourbaki) notations: N D f0;1;2;:::g; Z D ring of integers; Q D fieldofrationalnumbers;RDfieldofrealnumbers;CDfieldofcomplexnumbers;F D p Z=pZD field with p elements, p a prime number. For integers m and n, mjn means that mdividesn,i.e.,n2mZ. Throughoutthenotes,p isaprimenumber,i.e.,pD2;3;5;:::. Throughoutk isthegroundring(alwayscommutative,andoftenafield),andRalways denotes a commutative k-algebra. Unadorned tensor products are over k. Notations from commutativealgebraareasinmyprimerCA(seebelow). Whenk isafield,ksep denotesa separablealgebraicclosureofk andkal analgebraicclosureofk. ThedualHom .V;k/ k-lin ofak-moduleV isdenotedbyV_. ThetransposeofamatrixM isdenotedbyMt. Weusetheterms“morphismoffunctors”and“naturaltransformationoffunctors”inter- 0 changeably. ForfunctorsF andF fromthesamecategory,wesaythat“ahomomorphism F.X/ ! F0.X/ is natural in X” when we have a family of such maps, indexed by the objects X of the category, forming a natural transformation F !F0. For a natural trans- formation˛WF !F0, weoftenwrite˛ forthemorphism˛.X/WF.X/!F0.X/. When X its action on morphisms is obvious, we usually describe a functor F by giving its action 8 X (cid:32) F.X/ on objects. Categories are required to be locally small (i.e., the morphisms between any two objects form a set), except for the category A_ of functors A!Set. A diagram A!B ⇒C is said to be exact if the first arrow is the equalizer of the pair of arrows;inparticular,thismeansthatA!B isamonomorphism(cf. EGAI,Chap.0,1.4). Hereisalistofcategories: Category Objects Page Alg commutativek-algebras k A_ functorsA!Set Comod.C/ finite-dimensionalcomodulesoverC p.118 Grp (abstract)groups Rep.G/ finite-dimensionalrepresentationsofG p.112 Rep.g/ finite-dimensionalrepresentationsofg Set sets Vec finite-dimensionalvectorspacesoverk k Throughout the work, we often abbreviate names. In the following table, we list the shortenednameandthepageonwhichwebeginusingit. Shortenedname Fullname Page algebraicgroup affinealgebraicgroup p.28 algebraicmonoid affinealgebraicmonoid p.28 bialgebra commutativebi-algebra p.37 Hopfalgebra commutativeHopfalgebra p.37 groupscheme affinegroupscheme p.75 algebraicgroupscheme affinealgebraicgroupscheme p.75 groupvariety affinegroupvariety p.75 subgroup affinesubgroup p.109 representation linearrepresentation p.113 When working with schemes of finite type over a field, we typically ignore the nonclosed points. Inotherwords,weworkwithmaxspecsratherthanprimespecs,and“point”means “closedpoint”. Weusethefollowingconventions: X (cid:26)Y X isasubsetofY (notnecessarilyproper); X DdefY X isdefinedtobeY,orequalsY bydefinition; X (cid:25)Y X isisomorphictoY; X 'Y X andY arecanonicallyisomorphic(orthereisagivenoruniqueisomorphism); Passages designed to prevent the reader from falling into a possibly fatal error are sig- nalledbyputtingthesymbolAinthemargin. ASIDES may be skipped; NOTES should be skipped (they are mainly reminders to the author). Thereissomerepetitionwhichwillberemovedinlaterversions. 9 Prerequisites Althoughthetheoryofalgebraicgroupsispartofalgebraicgeometry,mostpeoplewhouse it are not algebraic geometers, and so I have made a major effort to keep the prerequisites to a minimum. The reader needs to know the algebra usually taught in first-year graduate courses(andinsomeadvancedundergraduatecourses),plusthebasiccommutativealgebra tobefoundinmyprimerCA.Familiaritywiththeterminologyofalgebraicgeometry,either varietiesorschemes,willbehelpful. References Inadditiontothereferenceslistedattheend(andinfootnotes),Ishallrefertothefollowing ofmynotes(availableonmywebsite): CA APrimerofCommutativeAlgebra(v2.22,2011). GT GroupTheory(v3.11,2011). FT FieldsandGaloisTheory(v4.22,2011). AG AlgebraicGeometry(v5.22,2012). CFT ClassFieldTheory(v4.01,2011). ThelinkstoCA,GT,FT,andAGinthepdffilewillworkifthefilesareplacedinthesame directory. Also,Iusethefollowingabbreviations: BourbakiA Bourbaki,Alge`bre. BourbakiAC Bourbaki,Alge`breCommutative(I–IV1985;V–VI1975;VIII–IX1983;X 1998). BourbakiLIE Bourbaki,GroupesetAlge`bresdeLie(I1972;II–III1972;IV–VI1981). DG DemazureandGabriel,GroupesAlge´briques,TomeI,1970. EGA Ele´mentsdeGe´ome´trieAlge´brique,Grothendieck(avecDieudonne´). SGA3 Sche´mas en Groupes (Se´minaire de Ge´ome´trie Alge´brique, 1962-64, Demazure, Grothendieck,etal.);2011edition. monnnnn http://mathoverflow.net/questions/nnnnn/ Sources I list some of the works which I have found particularly useful in writing this book, and whichmaybeusefulalsotothereader: DemazureandGabriel1970;Serre1993;Springer 1998;Waterhouse1979. Acknowledgements The writing of these notes began when I taught a course at CMS, Zhejiang University, Hangzhou in Spring, 2005. I thank the Scientific Committee and Faculty of CMS for the invitationtolectureatCMS,andthoseattendingthelectures,especiallyDingZhiguo,Han Gang,LiuGongxiang,SunShenghao,XieZhizhang,YangTian,ZhouYangmei,andMunir Ahmed,fortheirquestionsandcommentsduringthecourse. I thank the following for providing comments and corrections for earlier versions of thesenotes: BrianConrad,DarijGrinberg,LucioGuerberoff,FlorianHerzig,TimoKeller, Chu-WeeLim,VictorPetrov,DavidVogan,JonathanWang,XiandongWang. 10
Description: