SPRINGER BRIEFS IN AGRICULTURE Margaret A. Oliver Richard Webster Basic Steps in Geostatistics: The Variogram and Kriging 123 SpringerBriefs in Agriculture More information about this series at http://www.springer.com/series/10183 Margaret A. Oliver Richard Webster (cid:129) Basic Steps in Geostatistics: The Variogram and Kriging 123 Margaret A.Oliver Richard Webster SoilResearch Centre RothamstedResearch UniversityofReading Harpenden Reading UK UK ISSN 2211-808X ISSN 2211-8098 (electronic) SpringerBriefs inAgriculture ISBN 978-3-319-15864-8 ISBN 978-3-319-15865-5 (eBook) DOI 10.1007/978-3-319-15865-5 LibraryofCongressControlNumber:2015932443 SpringerChamHeidelbergNewYorkDordrechtLondon ©TheAuthor(s)2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) Preface This Brief takes readers, in particular environmental scientists, through the important steps of a geostatistical analysis. Most properties of the environment, such as rainfall, plant nutrients in the soil and pollutants in the air, are measured effectively at points between which there are large gaps. The environment is con- tinuous, however, and environmental scientists and their clients typically want to know the values of those properties between the points, in the gaps; they want to predict in a spatial sense from their data, taking into account the locations of their observations. Geostatistics comprises a set of tools that enable them to do that optimally by methods established for properties that appear to vary randomly in one, two or three dimensions. The variogram is the central tool of geostatistics. Itenablesscientiststoassesswhethertheirdataarespatiallycorrelatedandtowhat extent.Withasuitablemodelforittheycancombineitwiththeirdatatopredictby kriging, which in its simpler forms is one of weighted averaging. Kriging is an optimal method of prediction in that it provides unbiased estimates with minimum variance.The techniqueisnowavailable in many statistical packagessothat users can apply it at the press of a few buttons without any idea of what their experi- mental variogram is like or whether an appropriate model has been fitted to it. We warn against the practice. We take readers through the stages of computing a reliable experimental vari- ogram from sufficient data and the fitting of suitable mathematical models. These are the most important stages of a geostatistical analysis. If they are done with proper care kriging provides the best possible predictions from data. Chapter1introducesthebackgroundtogeostatisticswithexamplesofthebreadth of current applications. Almost all statistical analyses of environmental data, includinggeostatistics,dependonsampledata,andinthischapterweintroducethe basic concepts of sampling: the specification of variables, the support and suitable sampling designs. Chapter 2 describes random variables and regionalized variable theorybriefly;thisisthetheorythatunderpinsgeostatistics.Forreaderswhowishto knowmoreofthetheorywerecommendfurtherreading.Chapter3explainshowto compute the experimental variogram from regular and irregular sampling designs, the factors that affect the reliability of the variogram and how to model the v vi Preface experimental values reliably. Most users of geostatistics are eager to obtain maps of thevariables that interest them, and Chap. 4 illustrates how todo this optimally with kriging. The theory of ordinary kriging is described, and we show how the choiceofmodelforthevariogramaffectsthekrigingweights.Thewaytheweights are obtained in kriging makes the method different from other interpolators. In Chap.5wereturntosamplingtomeettheneedsofspatialanalysis.Weconsiderthe situationwherenothingisknownaboutthescaleorpatternofspatialvariationand forwhichanestedsurveyandanalysisprovideasolution.Wesuggestotherwaysof determining the spatial scale to sample for mapping that use variograms from existingdata,eitherofthevariablesofinterestorofintensiveancillarydata,suchas those from satellites or aerial photographs. Finally, in Chap. 6 we explore the difficulties that spatial trend poses for geostatistical analysis and how they can be overcome by residual maximum likelihood estimation of the variogram and universal kriging. Acknowledgments We thank Dr. A. Vásquez for the data from his survey of trace metals in soil near MadridforthedataoncadmiumusedforFig.3.7andDr.B.P.Marchantforfitting the REML variogram (Fig. 6.3) with his own Matlab program. vii Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background to Geostatistics. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Applications of Geostatistics . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Mining and Engineering . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Environmental Pollution . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.3 Precision Agriculture (PA) . . . . . . . . . . . . . . . . . . . . . . 4 1.2.4 Fisheries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 The Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.2 The Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.3 Units and Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.4 Practical Matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 The Essence of Geostatistics . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Regionalized Variable Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Random Variables and Regionalized Variable Theory. . . . . . . . . 11 2.1.1 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 The Variogram and Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 The Experimental Variogram. . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.1 Computing the Variogram from Regular Sampling in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.2 Computing the Variogram from Regular and Irregular Sampling in Two Dimensions . . . . . . . . . . . . . . . . . . . . 18 3.2 Factors Affecting the Reliability of Experimental Variograms . . . 19 3.2.1 Sample Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.2 Sampling Interval and Spatial Scale . . . . . . . . . . . . . . . . 23 3.2.3 Lag Interval and Bin Width. . . . . . . . . . . . . . . . . . . . . . 24 3.2.4 Statistical Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.5 Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.6 Trend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ix x Contents 3.3 Modelling the Variogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 Principal Features of the Variogram . . . . . . . . . . . . . . . . 30 3.3.2 Variogram Model Functions . . . . . . . . . . . . . . . . . . . . . 32 3.4 Factors Affecting the Reliability of Variogram Models . . . . . . . . 37 3.4.1 Fitting Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4 Geostatistical Prediction: Kriging . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.1 Kriging Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.2 Kriging Neighbourhood . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.3 Punctual and Block Kriging for Mapping . . . . . . . . . . . . 57 4.2.4 Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2.5 Simple Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.6 Lognormal Kriging. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1 Sampling for the Variogram . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.1.1 Nested Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 Sampling Plans for Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2.1 Illustrative Example: Sampling to Map Chromium in the Swiss Jura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6 Dealing with Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.1 Trend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.1.1 Variogram and Model. . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3 Illustration from a Case Study . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99