ebook img

Basic Radar Analysis PDF

727 Pages·2016·42.37 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Basic Radar Analysis

Basic Radar Analysis For a complete listing of titles in the Artech House Radar Series, turn to the back of this book. Basic Radar Analysis Mervin C. Budge, Jr. Shawn R. German Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library. Cover design by John Gomes ISBN 13: 978-1-60807-878-3 © 2015 ARTECH HOUSE 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. DISCLAIMER OF WARRANTY The technical descriptions, computer programs and documents in this book and on the accompanying compact disc have been developed with the greatest of care and they have been useful to the authors in a broad range of applications; however, they are provided as is, without warranty of any kind. Artech House, Inc. and the authors and editors of the book titled Basic Radar Analysis make no warranties, expressed or implied, that the equations, programs, and procedures in this book or its associated software and documents on the compact disc are free of error, or are consistent with any particular standard of merchantability, or will meet your requirements for any particular application. They should not be relied upon for solving a problem whose incorrect solution could result in injury to a person or loss of property. Any use of the programs, documents or procedures in such a manner is at the user’s own risk. The editors, authors and publisher disclaim all liability for direct, incidental or consequent damages resulting from the use of the programs, documents or procedures in this book or on the accompanying compact disc. 10 9 8 7 6 5 4 3 2 1 Contents Preface Acknowledgements Chapter 1 Radar Basics 1.1 Introduction 1.2 Radar Types 1.3 Range Measurement 1.4 Ambiguous Range 1.5 Usable Range and Instrumented Range 1.6 Range-Rate Measurement (Doppler) 1.7 Decibels 1.8 dB Arithmetic 1.9 Complex Signal Notation 1.10 Radar Block Diagram 1.11 Exercises References Chapter 2 Radar Range Equation 2.1 Introduction 2.2 Basic Radar Range Equation 2.2.1 Derivation of E S 2.2.2 Derivation of E N 2.3 A Power Approach to SNR 2.4 Example 1 2.5 Detection Range 2.6 Search Radar Range Equation 2.7 Example 2 2.8 Radar Range Equation Summary 2.9 Exercises References Appendix 2A: Derivation of Search Solid Angle Equation Chapter 3 Radar Cross Section 3.1 Introduction 3.2 RCS of Simple Shapes 3.3 Swerling RCS Models 3.3.1 Swerling Statistics 3.3.2 Swerling Fluctuation Models 3.3.3 Math Behind the Fluctuation Model 3.4 Relation of Swerling Models to Actual Targets 3.4.1 Simulating Swerling Targets 3.5 Frequency Agility and SW2 or SW4 Targets 3.5.1 Special Cases 3.6 Exercises References Chapter 4 Noise 4.1 Introduction 4.2 Noise in Resistive Networks 4.2.1 Thevenin Equivalent Circuit of a Noisy Resistor 4.2.2 Multiple Noisy Resistors 4.3 Equivalent/Effective Noise Temperature for Active Devices 4.4 Noise Figure 4.4.1 Derivation of Noise Figure 4.4.2 Attenuators 4.5 Noise Figure of Cascaded Devices 4.6 An Interesting Example 4.7 Output Noise Power When the Source Temperature Is Not T 0 4.8 A Note About Cascaded Devices and the Radar Range Equation 4.9 Exercises References Chapter 5 Radar Losses 5.1 Introduction 5.2 Transmit Losses 5.3 Antenna Losses 5.4 Propagation Losses 5.5 Receive Antenna and RF Losses 5.6 Processor and Detection Losses 5.7 Exercises References Appendix 5A: Waveguide Attenuation 5A.1 Exercises Appendix 5B: Atmospheric and Rain Attenuation 5B.1 Function tropatten.m 5B.1.1 Compute International Civil Aviation Organization (ICAO) Standard Atmosphere 1964 5B.1.2 Absorption Coefficient for Oxygen 5B.1.3 Absorption Coefficient for Water Vapor 5B.2 Function troprefract.m 5B.3 Function troploss.m 5B.4 Function rainAttn2way.m Chapter 6 Detection Theory 6.1 Introduction 6.2 Noise in Receivers 6.2.1 IF Configuration 6.2.2 Baseband Configuration 6.3 Signal in Receivers 6.3.1 Introduction and Background 6.3.2 Signal Model for SW0/SW5 Targets 6.3.3 Signal Model for SW1/SW2 Targets 6.3.4 Signal Model for SW3/SW4 Targets 6.4 Signal-Plus-Noise in Receivers 6.4.1 General Formulation 6.4.2 Signal-Plus-Noise Model for SW1/SW2 Targets 6.4.3 Signal-Plus-Noise Model for SW0/SW5 Targets 6.4.4 Signal-Plus-Noise Model for SW3/SW4 Targets 6.5 Detection Probability 6.5.1 Introduction 6.5.2 Amplitude Detector Types 6.5.3 Detection Logic 6.5.4 Calculation of P and P d fa 6.5.5 Behavior Versus Target Type 6.6 Determination of False Alarm Probability 6.6.1 Example 1—Computing P fa 6.6.2 Example 2—Detection Contour 6.7 Summary 6.8 Exercises References Chapter 7 Matched Filter 7.1 Introduction 7.2 Problem Definition 7.3 Problem Solution 7.4 Matched Filter Examples 7.4.1 General Formulation 7.4.2 Response for an Unmodulated Pulse 7.4.3 Response for an LFM Pulse 7.5 Summary 7.6 Exercises References Chapter 8 Detection Probability Improvement Techniques 8.1 Introduction 8.2 Coherent Integration 8.2.1 SNR Analysis 8.2.2 Detection Analysis 8.3 Noncoherent Integration 8.3.1 Example 1 8.3.2 Example 2 8.4 Cumulative Detection Probability 8.4.1 Example 3 8.5 m-of-n Detection 8.6 Exercises References Appendix 8A: Noise Autocorrelation at the Output of a Matched Filter Appendix 8B: Probability of Detecting SW1 and SW3 Targets on m Closely Spaced Pulses Appendix 8C: Cumulative Detection Probability Chapter 9 Ambiguity Function 9.1 Introduction 9.2 Ambiguity Function Development 9.3 Example 1—Unmodulated Pulse 9.4 Example 2—LFM Pulse 9.5 Numerical Techniques 9.6 Ambiguity Function Generation Using the FFT 9.7 Exercises References Chapter 10 Waveform Coding 10.1 Introduction 10.2 FM Waveforms 10.2.1 LFM with Amplitude Weighting 10.2.2 Nonlinear FM (NLFM) 10.3 Phase Coded Pulses 10.3.1 Frank Polyphase Coding 10.3.2 Barker Coded Waveforms 10.3.3 PRN Coded Pulses 10.4 Step Frequency Waveforms 10.4.1 Doppler Effects 10.5 Closing Comments 10.6 Exercises References Appendix 10A: LFM and the sinc2(x) Function Chapter 11 Stretch Processing 11.1 Introduction 11.2 Stretch Processor Configuration 11.3 Stretch Processor Operation 11.4 Stretch Processor SNR 11.4.1 Matched Filter 11.4.2 Stretch Processor 11.5 Stretch Processor Implementation

Description:
Artech House, 2015 — 784 p. — (Artech House Radar Library). — ISBN-10: 1608078787, ISBN-13: 978-1-60807-878-3.This authoritative new resource presents fundamentals of radar analysis including the range equation, detection theory, ambiguity functions, antennas, receivers, SP, and chaff analysis
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.