ebook img

Basic noncommutative geometry PDF

239 Pages·2009·3.086 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Basic noncommutative geometry

ELM_Khalkhali_titelei 14.11.2009 11:47 Uhr Seite 1 ELM_Khalkhali_titelei 14.11.2009 11:47 Uhr Seite 2 EMS Series of Lectures in Mathematics Edited by Andrew Ranicki (University of Edinburgh, U.K.) EMS Series of Lectures in Mathematicsis a book series aimed at students, professional mathematicians and scientists. It publishes polished notes arising from seminars or lecture series in all fields of pure and applied mathematics, including the reissue of classic texts of continuing interest. The individual volumes are intended to give a rapid and accessible introduction into their particular subject, guiding the audience to topics of current research and the more advanced and specialized literature. Previously published in this series: Katrin Wehrheim, Uhlenbeck Compactness Torsten Ekedahl, One Semester of Elliptic Curves Sergey V. Matveev, Lectures on Algebraic Topology Joseph C. Várilly, An Introduction to Noncommutative Geometry Reto Müller, Differential Harnack Inequalities and the Ricci Flow Eustasio del Barrio, Paul Deheuvels and Sara van de Geer,Lectures on Empirical Processes Iskander A. Taimanov, Lectures on Differential Geometry Martin J. Mohlenkamp, María Cristina Pereyra,Wavelets, Their Friends, and What They Can Do for You Stanley E. Payne and Joseph A. Thas, Finite Generalized Quadrangles ELM_Khalkhali_titelei 14.11.2009 11:47 Uhr Seite 3 Masoud Khalkhali Basic Noncommutative Geometry ELM_Khalkhali_titelei 14.11.2009 11:47 Uhr Seite 4 Author: Masoud Khalkhali Department of Mathematics The University of Western Ontario London, Ontario N6A 5B7 Canada E-mail: [email protected] 2010 Mathematics Subject Classification: 58-02; 58B34 Key words: Noncommutative space, noncommutative quotient, groupoid, cyclic cohomology, Connes–Chern character, index formula ISBN 978-3-03719-061-6 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. ©2009 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum FLI C4 CH-8092 Zürich Switzerland Phone: +41 (0)44 632 34 36 Email: [email protected] Homepage: www.ems-ph.org Typeset using the author’s TEX files: I. Zimmermann, Freiburg Printed on acid-free paper produced from chlorine-free pulp. TCF°° Printed in Germany 9 8 7 6 5 4 3 2 1 ForAzadehandSaman Contents 1 Examplesofalgebra-geometrycorrespondences 1 1.1 LocallycompactspacesandcommutativeC(cid:2)-algebras . . . . . . . . 1 1.2 Vectorbundles,finiteprojectivemodules,andidempotents . . . . . . 15 1.3 Affinevarietiesandfinitelygeneratedcommutativereducedalgebras . 21 1.4 Affineschemesandcommutativerings . . . . . . . . . . . . . . . . . 24 1.5 CompactRiemannsurfacesandalgebraicfunctionfields . . . . . . . 25 1.6 SetsandBooleanalgebras . . . . . . . . . . . . . . . . . . . . . . . 26 1.7 FromgroupstoHopfalgebrasandquantumgroups . . . . . . . . . . 27 2 Noncommutativequotients 43 2.1 Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2 Groupoidalgebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.3 Moritaequivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.4 MoritaequivalenceforC(cid:2)-algebras . . . . . . . . . . . . . . . . . . 69 2.5 Noncommutativequotients . . . . . . . . . . . . . . . . . . . . . . . 75 2.6 Sourcesofnoncommutativespaces . . . . . . . . . . . . . . . . . . . 82 3 Cycliccohomology 83 3.1 Hochschildcohomology . . . . . . . . . . . . . . . . . . . . . . . . 85 3.2 Hochschildcohomologyasaderivedfunctor. . . . . . . . . . . . . . 91 3.3 Deformationtheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.4 Topologicalalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.5 Examples: Hochschild(co)homology . . . . . . . . . . . . . . . . . 111 3.6 Cycliccohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.7 Connes’longexactsequence . . . . . . . . . . . . . . . . . . . . . . 132 3.8 Connes’spectralsequence . . . . . . . . . . . . . . . . . . . . . . . 136 3.9 Cyclicmodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 3.10 Examples: cycliccohomology . . . . . . . . . . . . . . . . . . . . . 144 4 Connes–Cherncharacter 150 4.1 Connes–CherncharacterinK-theory . . . . . . . . . . . . . . . . . . 150 4.2 Connes–CherncharacterinK-homology . . . . . . . . . . . . . . . . 163 4.3 Algebrasstableunderholomorphicfunctionalcalculus . . . . . . . . 180 4.4 Afinalword: basicnoncommutativegeometryinanutshell . . . . . . 184 viii Introduction Appendices 186 A Gelfand–Naimarktheorems 186 A.1 Gelfand’stheoryofcommutativeBanachalgebras . . . . . . . . . . . 186 A.2 StatesandtheGNSconstruction . . . . . . . . . . . . . . . . . . . . 190 B Compactoperators,Fredholmoperators,andabstractindextheory 197 C Projectivemodules 204 D Equivalenceofcategories 206 Bibliography 209 Index 219 Introduction Oneofthemajoradvancesofscienceinthe20thcenturywasthediscoveryofamath- ematical formulation of quantum mechanics by Heisenberg in 1925 [94].1 From a mathematical point of view, this transition from classical mechanics to quantum me- chanics amounts to, among other things, passing from the commutative algebra of classicalobservablestothenoncommutativealgebraofquantummechanicalobserv- ables. Tounderstandthisbetterwerecallthatinclassicalmechanicsanobservableof a system (e.g. energy, position, momentum, etc.) is a function on a manifold called thephasespaceofthesystem. Classicalobservablescanthereforebemultipliedina pointwisemannerandthismultiplicationisobviouslycommutative. Immediatelyafter Heisenberg’swork,ensuingpapersbyDirac[67]andBorn–Heisenberg–Jordan[16], made it clear that a quantum mechanical observable is a (selfadjoint) linear operator onaHilbertspace,calledthestatespaceofthesystem. Theseoperatorscanagainbe multipliedwithcompositionastheirmultiplication,butthisoperationisnotnecessarily commutativeanylonger.2 InfactHeisenberg’scommutationrelation h pq(cid:2)qp D 1 2(cid:2)i shows that position and momentum operators do not commute and this in turn can be shown to be responsible for the celebrated uncertainty principle of Heisenberg. Thus,togetamoreaccuratedescriptionofnatureoneismoreorlessforcedtoreplace the commutative algebra of functions on a space by the noncommutative algebra of operatorsonaHilbertspace. AlittlemorethanfiftyyearsafterthesedevelopmentsAlainConnesrealizedthat asimilarprocedurecaninfactbeappliedtoareasofmathematicswheretheclassical notions of space (e.g. measure space, locally compact space, or smooth space) lose its applicability and relevance [37], [35], [36], [39]. The inadequacy of the classical notionofspacemanifestsitselfforexamplewhenonedealswithhighlysingular“bad quotients”: spacessuchasthequotientofanicespacebytheergodicactionofagroup, orthespaceofleavesofafoliationinthegenericcase,togivejusttwoexamples. Inall theseexamplesthequotientspaceistypicallyill-behaved,evenasatopologicalspace. ForinstanceitmayfailtobeevenHausdorff,orhaveenoughopensets,letalonebeing a reasonably smooth space. The unitary dual of a discrete group, except when the groupisabelianoralmostabelian,isanotherexampleofanill-behavedspace. 1Arivalproposalwhich,bytheStone–vonNeumannuniquenesstheorem,turnedouttobeessentially equivalenttoHeisenberg’swasarrivedatshortlyafterwardsbySchrödinger[161].ItishoweverHeisenberg’s matrixmechanicsthatdirectlyandmostnaturallyrelatestononcommutativegeometry. 2Strictlyspeakingselfadjointoperatorsdonotformanalgebrasincetheyarenotclosedundermultipli- cation.Byanalgebraofobservableswethereforemeanthealgebrathattheygenerate. x Introduction One of Connes’key observations is that in all these situations one can define a noncommutativealgebrathroughauniversalmethodwhichwecallthenoncommutative quotientconstructionthatcapturesmostoftheinformationhiddenintheseunwieldy quotients. Examplesofthisnoncommutativequotientconstructionincludethecrossed productbyanactionofagroup, oringeneralbyanactionofagroupoid. Ingeneral thenoncommutativequotientisthegroupoidalgebraofatopologicalgroupoid. Thisnewnotionofgeometry,whichisgenerallyknownasnoncommutativegeome- try,isarapidlygrowingnewareaofmathematicsthatinteractswithandcontributesto manydisciplinesinmathematicsandphysics. Examplesofsuchinteractionsandcon- tributionsinclude: thetheoryofoperatoralgebras, indextheoryofellipticoperators, algebraicanddifferentialtopology,numbertheory,theStandardModelofelementary particles,thequantumHalleffect,renormalizationinquantumfieldtheory,andstring theory. Tounderstandthebasicideasofnoncommutativegeometryoneshouldperhapsfirst come to grips with the idea of a noncommutative space. What is a noncommutative space? The answer to this question is based on one of the most profound ideas in mathematics,namelyadualityorcorrespondencebetweenalgebraandgeometry,3 Algebra ! Geometry accordingtowhicheveryconceptorstatementinAlgebracorrespondsto,andcanbe equallyformulatedby,asimilarconceptandstatementinGeometry. Onaphysiologicallevelthiscorrespondenceisperhapsrelatedtoadivisioninthe humanbrain: onecomputesandmanipulatessymbolswiththelefthemisphereofthe brainandonevisualizesthingswiththerighthemisphere. Computationsevolveintime andhaveatemporalcharacter,whilevisualizationisinstantandimmediate. Itwasfor agoodreasonthatHamilton,oneofthecreatorsofmodernalgebraicmethods,called hisapproachtoalgebra,e.g.tocomplexnumbersandquaternions,thescienceofpure time[92]. We emphasize that the algebra-geometry correspondence is by no means a new observation or a new trend in mathematics. On the contrary, this duality has always existedandhasbeenutilizedinmathematicsanditsapplicationsveryoften. Theear- liestexampleisperhapstheuseofnumbersincounting. Itis, however, thecasethat throughout history each new generation of mathematicians has found new ways of formulatingthisprincipleandatthesametimebroadeningitsscope. Justtomention a few highlights of this rich history we quote Descartes (analytic geometry), Hilbert (affinevarietiesandcommutativealgebras),Gelfand–Naimark(locallycompactspaces and commutative C(cid:2)-algebras), and Grothendieck (affine schemes and commutative 3Foramodernandverybroadpointofviewonthisduality,closetotheoneadoptedinthisbook,read thefirstsectionofShafarevich’sbook[164]aswellasCartier’sarticle[31].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.