ebook img

Basic Mathematics for Economists PDF

536 Pages·2003·3.042 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Basic Mathematics for Economists

Basic Mathematics for Economists Economicsstudentswillwelcometheneweditionofthisexcellenttextbook.Given thatmanystudentscomeintoeconomicscourseswithouthavingstudiedmathematics foranumberofyears,thisclearlywrittenbookwillhelptodevelopquantitativeskills ineventheleastnumeratestudentuptotherequiredlevelforageneralEconomics orBusinessStudiescourse.Allexplanationsofmathematicalconceptsaresetoutin thecontextofapplicationsineconomics. Thisneweditionincorporatesseveralnewfeatures,includingnewsectionson: • financialmathematics • continuousgrowth • matrixalgebra Improvedpedagogicalfeatures,suchaslearningobjectivesandendofchapterques- tions, along with an overall example-led format and the use of Microsoft Excel for relevantapplicationsmeanthatthistextbookwillcontinuetobeapopularchoicefor bothstudentsandtheirlecturers. MikeRosserisPrincipalLecturerinEconomicsintheBusinessSchoolatCoventry University. © 1993, 2003 Mike Rosser Basic Mathematics for Economists Second Edition Mike Rosser © 1993, 2003 Mike Rosser Firsteditionpublished1993 byRoutledge Thiseditionpublished2003 byRoutledge 11NewFetterLane,LondonEC4P4EE SimultaneouslypublishedintheUSAandCanada byRoutledge 29West35thStreet,NewYork,NY10001 RoutledgeisanimprintoftheTaylor&FrancisGroup This edition published in the Taylor & Francis e-Library, 2003. ©1993,2003MikeRosser Allrightsreserved.Nopartofthisbookmaybereprintedorreproducedor utilisedinanyformorbyanyelectronic,mechanical,orothermeans,now knownorhereafterinvented,includingphotocopyingandrecording,orinany informationstorageorretrievalsystem,withoutpermissioninwritingfrom thepublishers. BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloginginPublicationData Acatalogrecordforthisbookhasbeenrequested ISBN 0-203-42263-5 Master e-book ISBN ISBN 0-203-42439-5 (Adobe eReader Format) ISBN0–415–26783–8(hbk) ISBN0–415–26784–6(pbk) © 1993, 2003 Mike Rosser Contents Preface PrefacetoSecondEdition Acknowledgements 1 Introduction 1.1 Whystudymathematics? 1.2 Calculatorsandcomputers 1.3 Usingthebook 2 Arithmetic 2.1 Revisionofbasicconcepts 2.2 Multipleoperations 2.3 Brackets 2.4 Fractions 2.5 Elasticityofdemand 2.6 Decimals 2.7 Negativenumbers 2.8 Powers 2.9 Rootsandfractionalpowers 2.10 Logarithms 3 Introductiontoalgebra 3.1 Representation 3.2 Evaluation 3.3 Simplification:additionandsubtraction 3.4 Simplification:multiplication 3.5 Simplification:factorizing 3.6 Simplification:division 3.7 Solvingsimpleequations (cid:1) 3.8 Thesummationsign 3.9 Inequalitysigns © 1993, 2003 Mike Rosser 4 Graphsandfunctions 4.1 Functions 4.2 Inversefunctions 4.3 Graphsoflinearfunctions 4.4 Fittinglinearfunctions 4.5 Slope 4.6 Budgetconstraints 4.7 Non-linearfunctions 4.8 Compositefunctions 4.9 UsingExceltoplotfunctions 4.10 Functionswithtwoindependentvariables 4.11 Summingfunctionshorizontally 5 Linearequations 5.1 Simultaneouslinearequationsystems 5.2 Solvingsimultaneouslinearequations 5.3 Graphicalsolution 5.4 Equatingtosamevariable 5.5 Substitution 5.6 Rowoperations 5.7 Morethantwounknowns 5.8 Whichmethod? 5.9 Comparativestaticsandthereducedformof aneconomicmodel 5.10 Pricediscrimination 5.11 Multiplantmonopoly Appendix:linearprogramming 6 Quadraticequations 6.1 Solvingquadraticequations 6.2 Graphicalsolution 6.3 Factorization 6.4 Thequadraticformula 6.5 Quadraticsimultaneousequations 6.6 Polynomials 7 Financialmathematics:series,timeandinvestment 7.1 Discreteandcontinuousgrowth 7.2 Interest 7.3 Partyearinvestmentandtheannualequivalentrate 7.4 Timeperiods,initialamountsandinterestrates 7.5 Investmentappraisal:netpresentvalue 7.6 Theinternalrateofreturn 7.7 Geometricseriesandannuities © 1993, 2003 Mike Rosser 7.8 Perpetualannuities 7.9 Loanrepayments 7.10 Otherapplicationsofgrowthanddecline 8 Introductiontocalculus 8.1 Thedifferentialcalculus 8.2 Rulesfordifferentiation 8.3 Marginalrevenueandtotalrevenue 8.4 Marginalcostandtotalcost 8.5 Profitmaximization 8.6 Respecifyingfunctions 8.7 Pointelasticityofdemand 8.8 Taxyield 8.9 TheKeynesianmultiplier 9 Unconstrainedoptimization 9.1 First-orderconditionsforamaximum 9.2 Second-orderconditionforamaximum 9.3 Second-orderconditionforaminimum 9.4 Summaryofsecond-orderconditions 9.5 Profitmaximization 9.6 Inventorycontrol 9.7 Comparativestaticeffectsoftaxes 10 Partialdifferentiation 10.1 Partialdifferentiationandthemarginalproduct 10.2 Furtherapplicationsofpartialdifferentiation 10.3 Second-orderpartialderivatives 10.4 Unconstrainedoptimization:functionswithtwovariables 10.5 Totaldifferentialsandtotalderivatives 11 Constrainedoptimization 11.1 Constrainedoptimizationandresourceallocation 11.2 Constrainedoptimizationbysubstitution 11.3 TheLagrangemultiplier:constrainedmaximization withtwovariables 11.4 TheLagrangemultiplier:second-orderconditions 11.5 ConstrainedminimizationusingtheLagrangemultiplier 11.6 Constrainedoptimizationwithmorethantwovariables 12 Furthertopicsincalculus 12.1 Overview 12.2 Thechainrule 12.3 Theproductrule 12.4 Thequotientrule © 1993, 2003 Mike Rosser 12.5 Individuallaboursupply 12.6 Integration 12.7 Definiteintegrals 13 Dynamicsanddifferenceequations 13.1 Dynamiceconomicanalysis 13.2 Thecobweb:iterativesolutions 13.3 Thecobweb:differenceequationsolutions 13.4 ThelaggedKeynesianmacroeconomicmodel 13.5 Duopolypriceadjustment 14 Exponentialfunctions,continuousgrowthand differentialequations 14.1 Continuousgrowthandtheexponentialfunction 14.2 Accumulatedfinalvaluesaftercontinuousgrowth 14.3 Continuousgrowthratesandinitialamounts 14.4 Naturallogarithms 14.5 Differentiationoflogarithmicfunctions 14.6 Continuoustimeanddifferentialequations 14.7 Solutionofhomogeneousdifferentialequations 14.8 Solutionofnon-homogeneousdifferentialequations 14.9 Continuousadjustmentofmarketprice 14.10 ContinuousadjustmentinaKeynesianmacroeconomicmodel 15 Matrixalgebra 15.1 Introductiontomatricesandvectors 15.2 Basicprinciplesofmatrixmultiplication 15.3 Matrixmultiplication–thegeneralcase 15.4 Thematrixinverseandthesolutionof simultaneousequations 15.5 Determinants 15.6 Minors,cofactorsandtheLaplaceexpansion 15.7 Thetransposematrix,thecofactormatrix,theadjoint andthematrixinverseformula 15.8 Applicationofthematrixinversetothesolutionof linearsimultaneousequations 15.9 Cramer’srule 15.10 Second-orderconditionsandtheHessianmatrix 15.11 ConstrainedoptimizationandtheborderedHessian Answers Symbolsandterminology © 1993, 2003 Mike Rosser

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.