Basic Classes of Linear Operators Israel Gohberg 5eymour Goldberg Marinus A. Kaashoek Springer Basel AG Israel Gohberg Marinus A. Kaashoek School of Mathematical Sciences Department of Mathematics and Computer Science Raymond and Beverly Sackler Vrije Universiteit Amsterdam Faculty of Exact Sciences De Boelelaan 1081a Tel Aviv University NL-1081 HV Amsterdam Ramat Aviv 69978 The Netherlands Israel e-mail: [email protected] e-mail: [email protected] Seymour Goldberg Department of Mathematics University of Maryland College Park, MD 20742-4015 USA e-mail: [email protected] 2000 Mathematics Subject Classification 47-01 A CIP catalogue record for this book is available from the Ubrary of Congress, Washington D.C., USA Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>. ISBN 978-3-7643-6930-9 ISBN 978-3-0348-7980-4 (eBook) DOI 10.1007/978-3-0348-7980-4 This work is subject to copyright. AII rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of iIIustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2003 Springer Basel AG Originally published by Birkhăuser Verlag, Basel, Switzerland in 2003 Printed on acid-free paper produced from chlorine-free pulp. TCF ca Cover design: Micha Lotrovsky, CH-4106 Therwil, Switzerland ISBN 978-3-7643-6930-9 www.birkhiiuser-science.com 987654321 Dedicatedtoour grandchildren Table ofContents Preface............................................................. xiii Introduction....................................•.....•.............. xv ChapterI HilbertSpaces....................•....................... 1 1.1 Complexn-Space 1 1.2 TheHilbertSpaceZj 3 1.3 DefinitionofHilbert SpaceanditsElementaryProperties 5 1.4 DistancefromaPointtoaFiniteDimensional Space 8 1.5 TheGramDeterminant 10 1.6 Incompatible SystemsofEquations ............................... 13 1.7 LeastSquareFit 15 1.8 DistancetoaConvexSetandProjectionsontoSubspaces 16 1.9 Orthonormal Systems 18 1.10 SzegoPolynomials 19 1.11 LegendrePolynomials 24 1.12 Orthonormal Bases 26 1.13 FourierSeries 29 1.14 Completeness oftheLegendrePolynomials 31 1.15 BasesfortheHilbert SpaceofFunctionsonaSquare 32 1.16 StabilityofOrthonormal Bases ................................... 34 1.17 SeparableSpaces 35 1.18 IsometryofHilbertSpaces 36 1.19 ExampleofaNonSeparableSpace 38 Exercises 38 ChapterII BoundedLinearOperatorsonHilbertSpaces............. 51 2.1 PropertiesofBoundedLinearOperators 51 2.2 ExamplesofBoundedLinearOperatorswithEstimatesofNonns 52 2.3 ContinuityofaLinearOperator 56 2.4 MatrixRepresentations ofBoundedLinearOperators 57 2.5 BoundedLinearFunctionals 60 2.6 OperatorsofFiniteRank 63 2.7 InvertibleOperators 64 2.8 InversionofOperatorsbytheIterativeMethod ..................... 69 2.9 InfiniteSystemsofLinearEquations 71 2.10 IntegralEquationsoftheSecondKind 73 viii TableofContents 2.11 AdjointOperators 76 2.12 SelfAdjointOperators 80 2.13 OrthogonalProjections ..................................... 81 2.14 TwoFundamentalTheorems 82 2.15 ProjectionsandOne-SidedInvertibilityofOperators 84 2.16 CompactOperators 91 2.17 TheProjectionMethodforInversionofLinearOperators 96 2.18 TheModifiedProjectionMethod 105 2.19 InvariantSubspaces 108 2.20 TheSpectrumofanOperator 109 Exercises 118 ChapterIII LaurentandToeplitzOperatorsonHilbertSpaces...... 135 3.1 LaurentOperators , 135 3.2 ToeplitzOperators .. .... ......... ... ....... .... ......... ....... 141 3.3 BandToep1itzoperators......................................... 143 3.4 ToeplitzOperatorswithContinuousSymbols 152 3.5 FiniteSectionMethod.......................................... 159 3.6 TheFiniteSectionMethodforLaurentOperators 163 Exercises 166 ChapterIV SpectralTheory ofCompactSelfAdjointOperators..... 171 4.1 ExampleofanInfiniteDimensionalGeneralization .. .............. 171 4.2 TheProblemofExistenceofEigenvaluesandEigenvectors......... 172 4.3 EigenvaluesandEigenvectorsofOperatorsofFiniteRank .......... 174 4.4 ExistenceofEigenvalues........................................ 175 4.5 SpectralTheorem 178 4.6 BasicSystemsofEigenvaluesandEigenvectors 180 4.7 SecondFormoftheSpectralTheorem 182 4.8 FormulafortheInverseOperator 183 4.9 Minimum-MaximumPropertiesofEigenvalues 185 Exercises 188 ChapterV SpectralTheoryofIntegralOperators................... 193 5.1 Hilbert-SchmidtTheorem ....................................... 193 5.2 PreliminariesforMercer'sTheorem .............................. 196 5.3 Mercer'sTheorem......... ... ... ................. ............ . 197 5.4 TraceFormulaforIntegralOperators 200 Exercises ...................................................... 200 ChapterVI UnboundedOperatorsonHilbertSpace................ 203 6.1 ClosedOperatorsandFirstExamples 203 6.2 TheSecondDerivativeasanOperator 204 TableofContents ix 6.3 TheGraphNorm 206 6.4 AdjointOperators 208 6.5 Sturm-LiouvilleOperators 211 6.6 SelfAdjoint OperatorswithCompactInverse ..................... 214 Exercises .............................................. 215 ChapterVII OscillationsofanElasticString....... 219 7.1 TheDisplacementFunction 219 7.2 BasicHarmonicOscillations 220 7.3 HarmonicOscillationswithanExternalForce " 222 ChapterVIII OperationalCalculuswithApplications............... 225 8.1 FunctionsofaCompactSelfAdjointOperator " 225 8.2 DifferentialEquationsinHilbertSpace 230 8.3 InfiniteSystemsofDifferentialEquations 232 8.4 Integro-DifferentialEquations 233 Exercises 234 ChapterIX SolvingLinearEquationsbyIterativeMethods 237 9.1 TheMainTheorem ............................................. 237 9.2 PreliminariesfortheProof " 238 9.3 ProofoftheMainTheorem 240 9.4 ApplicationtoIntegralEquations................................. 242 ChapterX FurtherDevelopmentsoftheSpectralTheorem.......... 243 10.1 SimultaneousDiagonalization 243 10.2 CompactNormalOperators 244 10.3 UnitaryOperators .................................... 246 10.4 SingularValues 248 10.5 TraceClassandHilbertSchmidtOperators 253 Exercises 254 ChapterXI BanachSpaces......................................... 259 11.1 DefinitionsandExamples 259 11.2 FiniteDimensionalNormedLinearSpaces 262 11.3 SeparableBanachSpacesandSchauderBases 264 11.4 Conjugate Spaces 265 11.5 Hahn-BanachTheorem 267 Exercises " 272 x TableofContents ChapterXII LinearOperatorsonaBanachSpace .................. 277 12.1 DescriptionofBoundedOperators 277 12.2 ClosedLinearOperators 279 12.3 ClosedGraphTheorem 281 12.4 ApplicationsoftheClosedGraphTheorem 283 12.5 ComplementedSubspacesandProjections 286 12.6 One-SidedInvertibilityRevisited 288 12.7 TheProjectionMethodRevisited ............................... 289 12.8 TheSpectrumofanOperator ................................... 290 12.9 VolterraIntegralOperator 293 12.10 AnalyticOperatorValuedFunctions 295 Exercises ..................................................... 296 ChapterXIII CompactOperatorsonaBanachSpace............... 299 13.1 ExamplesofCompactOperators 299 13.2 DecompositionofOperatorsofFiniteRank 302 13.3 ApproximationbyOperatorsofFiniteRank..................... 303 13.4 FirstResultsinFredholmTheory 305 13.5 ConjugateOperatorsonaBanachSpace 306 13.6 SpectrumofaCompactOperator............................... 310 13.7 Applications 313 Exercises ..................................................... 314 ChapterXIV PoincareOperators: DeterminantandTrace 317 14.1 DeterminantandTrace 317 14.2 FiniteRankOperators,DeterminantsandTraces 321 14.3 TheoremsaboutthePoincareDeterminant 327 14.4 DeterminantsandInversionofOperators 330 14.5 TraceandDeterminantFormulasforPoincareOperators .......... 336 Exercises ..................................................... 340 ChapterXV FredholmOperators.................................. 347 15.1 DefinitionandExamples 347 15.2 FirstProperties 347 15.3 PerturbationsSmallinNorm................................... 352 15.4 CompactPerturbations 355 15.5 UnboundedFredholmOperators 356 Exercises 358 Tableof Contents xi ChapterXVI Toeplitz andSingularIntegralOperators.............. 361 16.1 LaurentOperatorsonip(Z) 361 16.2 ToeplitzOperatorsonip •...•......•...•..................•.... 364 16.3 AnIllustrativeExample .... .... ................ ............... 372 16.4 ApplicationstoPairOperators .................................. 377 16.5 TheFiniteSectionMethodRevisited ............................ 384 16.6 SingularIntegralOperatorsontheUnitCircle 390 Exercises ..................................................... 395 ChapterXVII NonLinearOperators.. .... . 401 17.1 FixedPointTheorems 401 17.2 ApplicationsoftheContractionMappingTheorem 402 17.3 Generalizations ............................................... 405 Appendix 1: Countablesets andSeparableHilbertSpaces ............ 409 Appendix 2: The Lebesgueintegral and L Spaces 411 p SuggestedReading 415 References 417 List ofSymbols 419 Index 421 Preface The presentbook isanexpandedandenrichedversionofthetextBasic Operator Theory, written by the first two authors more than twentyyears ago. Since then the three ofus have used the basic operatortheory text in various courses. This experiencemotivatedus toupdate and improve the old text by includinga wider varietyofbasic classes ofoperatorsand their applications. Thepresentbook has alsobeenwritten insuch awaythat itcanserveasanintroductiontoourprevious books Classes ofLinearOperators, VolumesIand II.Weviewthethree books as aunit. We gratefully acknowledge the support ofthe mathematical departments of Tel-Aviv University, the University ofMaryland at College Park, and the Vrije UniversiteitatAmsterdam. ThegeneroussupportoftheSilverFamily Foundation ishighly appreciated. Amsterdam,November2002 The authors