ebook img

Basic algebra : groups, rings and fields PDF

478 Pages·2005·45.96 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Basic algebra : groups, rings and fields

Basic Algebra P.M. Cohn Basci Algebra Groups, Rings and Fields m Springer P.M. Cohn, MA, PhD, FRS Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK British Library Cataloguing in Publication Data Cohn, P. M. (Paul Moritz) Basic algebra: groups, rings and fields I. Algebra 2. Rings (Algebra) 3. Algebraic fields I. Title 512 ISBN 978-1-4471-1060-6 Library of Congress Cataloging-in-Publication Data Cohn, P.M. (Paul Moritz) Basic algebra: groups, rings, and fields/P.M. Cohn, p. cm. Includes bibliographical references and indexes. ISBN 978-1-4471-1060-6 ISBN 978-0-85729-428-9 (eBook) DOI 10.1007/978-0-85729-428-9 1. Algebra. I. Title. QA154.3.C64 2002 512-dc21 2002070686 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. springeronline.com © Professor P.M. Cohn 2003 Originally published by Springer-Verlag London Berlin Heidelberg in 2003 Softcover reprint of the hardcover 1st edition 2003 2nd printing 2005 The use of registered names, trademarks etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. Typesetting by BC Typesetting, Bristol BS31 1NZ 12/3830-54321 Printed on acid-free paper SPIN 11329916 Contents Preface ...................................................................................................................... ix Conventions on Terminology ................................................................................ xi 1. Sets 1.1 Finite, Countable and Uncountable Sets ........................................... . 1 1.2 Zorn's Lemma and Well-ordered Sets ............................................... . 8 1.3 Graphs ................................................................................................... . 15 2. Groups 2.1 Definition and Basic Properties........................................................... 25 2.2 Permutation Groups ............................................................................. 32 2.3 The Isomorphism Theorems......................... ....................................... 34 2.4 Soluble and Nilpotent Groups............................................................. 37 2.5 Commutators......................................................................................... 42 2.6 The Frattini Subgroup and the Fitting Subgroup ............................. 46 3. Lattices and Categories 3.1 Definitions; Modular and Distributive Lattices ................................. 51 3.2 Chain Conditions .................................................................................. 60 3.3 Categories............................................................................................... 65 3.4 Boolean Algebras................................................................................... 70 4. Rings and Modules 4.1 The Definitions Recalled .......................... ............................................ 79 4.2 The Category of Modules over a Ring ............................................... 84 4.3 Semisimple Modules............................................................................. 91 4.4 Matrix Rings ........................ ................................ ................. ................. 96 4.5 Direct Products of Rings...................................................................... 101 4.6 Free Modules ......................................................................................... 105 4.7 Projective and Injective Modules ...................... .................................. 110 4.8 The Tensor Product of Modules ......................................................... 117 4.9 Duality of Finite Abelian Groups........................................................ 125 v vi Basic Algebra 5. Algebras 5.1 Algebras; Definition and Examples ..................................................... 131 5.2 The Wedderburn Structure Theorems................................................ 137 5.3 The Radical............................................................................................ 141 5.4 The Tensor Product of Algebras ......................................................... 146 5.5 The Regular Representation; Norm and Trace.................................. 153 5.6 Mobius Functions ................................................................................. 157 6. Multilinear Algebra 6.1 Graded Algebras .................................................................................... 165 6.2 Free Algebras and Tensor Algebras..................................................... 168 6.3 The Hilbert Series of a Graded Ring or Module............................... 173 6.4 The Exterior Algebra on a Module ..................................................... 179 7. Field Theory 7.1 Fields and their Extensions.................................................................. 189 7.2 Splitting Fields....................................................................................... 195 7.3 The Algebraic Closure of a Field......................................................... 200 7.4 Separability............................................................................................. 203 7.5 Automorphisms of Field Extensions................................................... 206 7.6 The Fundamental Theorem of Galois Theory ................................... 211 7.7 Roots of Unity ....................................................................................... 217 7.8 Finite Fields............................................................................................ 223 7.9 Primitive Elements; Norm and Trace................................................. 227 7.10 Galois Theory of Equations ................................................................. 232 7.11 The Solution of Equations by Radicals .............................................. 238 8. Quadratic Forms and Ordered Fields 8.1 Inner Product Spaces ....................................................... ................ ..... 249 8.2 Orthogonal Sums and Diagonalization .............................................. 252 8.3 The Orthogonal Group of a Space................................. ..................... 256 8.4 The Clifford Algebra and the Spinor Norm ...................................... 259 8.5 Witt's Cancellation Theorem and the Witt Group of a Field ......... 268 8.6 Ordered Fields ....................................................................................... 272 8.7 The Field of Real Numbers.................................................................. 275 8.8 Formally Real Fields.............................................................................. 279 8.9 The Witt Ring of a Field...................................................................... 291 8.10 The Symplectic Group.......................................................................... 298 8.11 Quadratic Forms in Characteristic Two............................................. 301 9. Valuation Theory 9.1 Divisibility and Valuations................................................................... 307 9.2 Absolute Values..................................................................................... 312 9.3 The p-adic Numbers............................................................................. 322 9.4 Integral Elements................................................................................... 331 9.5 Extension of Valuations ....................................................................... 336 Contents vii 10. Commutative Rings 10.1 Operations on Ideals............................................................................. 347 10.2 Prime Ideals and Factorization............................................................ 349 10.3 Localization............................................................................................ 354 lOA Noetherian Rings................................................................................... 361 10.5 Dedekind Domains ............................................................................... 362 10.6 Modules over Dedekind Domains ...................................................... 371 10.7 Algebraic Equations .............................................................................. 376 10.8 The Primary Decomposition ............................................................... 380 10.9 Dimension.............................................................................................. 386 10.10 The Hilbert Nullstellensatz................................................................... 391 11. Infinite Field Extensions 11.1 Abstract Dependence Relations ........................................................... 397 11.2 Algebraic Dependence........................................................................... 402 11.3 Simple Transcendental Extensions ...................................................... 405 11.4 Separable and p-radical Extensions ..................................................... 409 11.5 Derivations ................ ............................................................................. 414 11.6 Linearly Disjoint Extensions ......................................... ....................... 418 11.7 Composites of Fields............................................................................. 427 11.8 Infinite Algebraic Extensions ............................................................... 431 11.9 Galois Descent ....................................................................................... 437 11.10 Kummer Extensions.............................................................................. 441 Bibliography .............................................................................................................. 449 List of Notations ...................................................................................................... 453 Author Index ............................................................................................................ 457 Subject Index ................................................................ ............................................ 459 Preface Much of the second and third year undergraduate course in mathematics (as well as some graduate work) was covered by Volumes 2 and 3 of my book on algebra, now out of print. 1 So I was very pleased when Springer Verlag offered to bring out a new version of these volumes. The present book is based on both these volumes, comple mented by the definitions and basic facts on groups and rings. Thus the volume is addressed to students who have some knowledge of linear algebra and who have met groups and fields, though all the essential facts are recalled here. My overall aim has been to present as many of the important results in algebra as would conveniently fit into one volume. It is my hope to collect the remaining parts of Volumes 2 and 3 into a second book, more oriented towards applications.2 Apart from chapters on groups (Chapter 2), rings and modules (Chapters 4, 5 and 6) and fields (Chapters 7 and 11), a number of concepts are treated that are less central but nevertheless have many uses. Chapter 1, on set theory, deals with countable and well-ordered sets, as well as Zorn's lemma and a brief section on graphs. Chapter 3 introduces lattices and categories, both concepts that form an important part of the language of modern algebra. The general theory of quadratic forms has many links with ordered fields, which are developed in Chapter 8. Chapters 9 and 10 are devoted to valuation theory and commutative rings, a subject that has gained in importance through its use in algebraic geometry. On a first encounter some readers may find the style of this book somewhat concise, but they should bear in mind that mathematical texts are best read with paper and pencil, to work out the full consequences of what is being said and to check examples. The matter has been well put by Einstein, who said: "Everything should be explained as far as possible but no further." There are numerous exercises throughout, with occasional hints (but no solutions), and some historical remarks. My thanks are due to the staff of Springer Verlag for the efficient way they have produced this volume. University College London P.M. Cohn June 2002 I Algebra, Vol. 2 (2nd edn, 1989) and Vol. 3 (2nd edn, 1991), Wiley and Sons. 2 Further Algebra and Applications, Springer Verlag, London (2003). Referred to in the text as FA. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.