Cornerstones Series Editors CharlesL.Epstein,UniversityofPennsylvania,Philadelphia StevenG.Krantz,UniversityofWashington,St.Louis Advisory Board AnthonyW.Knapp,StateUniversityofNewYorkatStonyBrook,Emeritus Anthony W. Knapp Basic Algebra Along with a companion volume Advanced Algebra Birkha¨user Boston • Basel • Berlin AnthonyW.Knapp 81UpperSheepPastureRoad EastSetauket,NY11733-1729 U.S.A. e-mail to: [email protected] http://www.math.sunysb.edu/˜aknapp/books/b-alg.html CoverdesignbyMaryBurgess. MathematicsSubjectClassicification(2000):15-01,20-02,13-01,12-01,16-01,08-01,18A05,68P30 LibraryofCongressControlNumber:2006932456 ISBN-100-8176-3248-4 eISBN-100-8176-4529-2 ISBN-13978-0-8176-3248-9 eISBN-13978-0-8176-4529-8 AdvancedAlgebra ISBN0-8176-4522-5 BasicAlgebraandAdvancedAlgebra(Set) ISBN0-8176-4533-0 Printedonacid-freepaper. (cid:1)c2006AnthonyW.Knapp All rights reserved. This work may not be translated or copied in whole or in part without the written permissionofthepublisher(Birkha¨userBoston,c/oSpringerScience+BusinessMediaLLC,233Spring Street,NewYork,NY10013,USA)andtheauthor,exceptforbriefexcerptsinconnectionwithreviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped isforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubjectto proprietaryrights. 9 8 7 6 5 4 3 2 1 www.birkhauser.com (EB) ToSusan and ToMyAlgebraTeachers: RalphFox,JohnFraleigh,RobertGunning, JohnKemeny,BertramKostant,RobertLanglands, GoroShimura,HaleTrotter,RichardWilliamson CONTENTS ContentsofAdvancedAlgebra x ListofFigures xi Preface xiii DependenceAmongChapters xvii StandardNotation xviii GuidefortheReader xix I. PRELIMINARIESABOUTTHEINTEGERS, POLYNOMIALS,ANDMATRICES 1 1. DivisionandEuclideanAlgorithms 1 2. UniqueFactorizationofIntegers 4 3. UniqueFactorizationofPolynomials 9 4. PermutationsandTheirSigns 15 5. RowReduction 19 6. MatrixOperations 24 7. Problems 30 II. VECTORSPACESOVERQ,R,ANDC 33 1. Spanning,LinearIndependence,andBases 33 2. VectorSpacesDefinedbyMatrices 38 3. LinearMaps 42 4. DualSpaces 50 5. QuotientsofVectorSpaces 54 6. DirectSumsandDirectProductsofVectorSpaces 58 7. Determinants 65 8. EigenvectorsandCharacteristicPolynomials 73 9. BasesintheInfinite-DimensionalCase 77 10. Problems 82 III. INNER-PRODUCTSPACES 88 1. InnerProductsandOrthonormalSets 88 2. Adjoints 98 3. SpectralTheorem 104 4. Problems 111 vii viii Contents IV. GROUPSANDGROUPACTIONS 116 1. GroupsandSubgroups 117 2. QuotientSpacesandHomomorphisms 128 3. DirectProductsandDirectSums 134 4. RingsandFields 140 5. PolynomialsandVectorSpaces 147 6. GroupActionsandExamples 158 7. SemidirectProducts 166 8. SimpleGroupsandCompositionSeries 170 9. StructureofFinitelyGeneratedAbelianGroups 174 10. SylowTheorems 183 11. CategoriesandFunctors 188 12. Problems 198 V. THEORYOFASINGLELINEARTRANSFORMATION 209 1. Introduction 209 2. DeterminantsoverCommutativeRingswithIdentity 212 3. CharacteristicandMinimalPolynomials 216 4. ProjectionOperators 224 5. PrimaryDecomposition 226 6. JordanCanonicalForm 229 7. ComputationswithJordanForm 235 8. Problems 239 VI. MULTILINEARALGEBRA 245 1. BilinearFormsandMatrices 246 2. SymmetricBilinearForms 250 3. AlternatingBilinearForms 253 4. HermitianForms 255 5. GroupsLeavingaBilinearFormInvariant 257 6. TensorProductofTwoVectorSpaces 260 7. TensorAlgebra 274 8. SymmetricAlgebra 280 9. ExteriorAlgebra 288 10. Problems 292 VII. ADVANCEDGROUPTHEORY 303 1. FreeGroups 303 2. SubgroupsofFreeGroups 314 3. FreeProducts 319 4. GroupRepresentations 326 Contents ix VII. ADVANCEDGROUPTHEORY (Continued) 5. Burnside’sTheorem 342 6. ExtensionsofGroups 344 7. Problems 357 VIII.COMMUTATIVERINGSANDTHEIRMODULES 367 1. ExamplesofRingsandModules 367 2. IntegralDomainsandFieldsofFractions 378 3. PrimeandMaximalIdeals 381 4. UniqueFactorization 384 5. Gauss’sLemma 390 6. FinitelyGeneratedModules 396 7. OrientationforAlgebraicNumberTheoryand AlgebraicGeometry 408 8. NoetherianRingsandtheHilbertBasisTheorem 414 9. IntegralClosure 417 10. LocalizationandLocalRings 425 11. DedekindDomains 434 12. Problems 439 IX. FIELDSANDGALOISTHEORY 448 1. AlgebraicElements 449 2. ConstructionofFieldExtensions 453 3. FiniteFields 457 4. AlgebraicClosure 460 5. GeometricConstructionsbyStraightedgeandCompass 464 6. SeparableExtensions 469 7. NormalExtensions 476 8. FundamentalTheoremofGaloisTheory 479 9. ApplicationtoConstructibilityofRegularPolygons 483 10. ApplicationtoProvingtheFundamentalTheoremofAlgebra 486 11. ApplicationtoUnsolvabilityofPolynomialEquationswith NonsolvableGaloisGroup 488 12. ConstructionofRegularPolygons 493 13. SolutionofCertainPolynomialEquationswithSolvable GaloisGroup 501 14. ProofThatπ IsTranscendental 510 15. NormandTrace 514 16. SplittingofPrimeIdealsinExtensions 521 17. TwoToolsforComputingGaloisGroups 527 18. Problems 534 x Contents X. MODULESOVERNONCOMMUTATIVERINGS 544 1. SimpleandSemisimpleModules 544 2. CompositionSeries 551 3. ChainConditions 556 4. HomandEndforModules 558 5. TensorProductforModules 565 6. ExactSequences 574 7. Problems 579 APPENDIX 583 A1. SetsandFunctions 583 A2. EquivalenceRelations 589 A3. RealNumbers 591 A4. ComplexNumbers 594 A5. PartialOrderingsandZorn’sLemma 595 A6. Cardinality 599 HintsforSolutionsofProblems 603 SelectedReferences 697 IndexofNotation 699 Index 703 CONTENTS OF ADVANCEDALGEBRA I. TransitiontoModernNumberTheory II. Wedderburn–ArtinRingTheory III. BrauerGroup IV. HomologicalAlgebra V. ThreeTheoremsinAlgebraicNumberTheory VI. ReinterpretationwithAdelesandIdeles VII. InfiniteFieldExtensions VIII. BackgroundforAlgebraicGeometry IX. TheNumberTheoryofAlgebraicCurves X. MethodsofAlgebraicGeometry LIST OF FIGURES 2.1. Thevectorspaceoflinesv+U inR2 paralleltoagivenlineU throughtheorigin 55 2.2. Factorizationoflinearmapsviaaquotientofvectorspaces 56 2.3. Three1-dimensionalvectorsubspacesofR2 suchthateachpair hasintersection0 62 2.4. Universalmappingpropertyofadirectproductofvectorspaces 64 2.5. Universalmappingpropertyofadirectsumofvectorspaces 65 3.1. Geometricinterpretationoftheparallelogramlaw 91 3.2. Resolutionofavectorintoaparallelcomponentandan orthogonalcomponent 93 4.1. Factorizationofhomomorphismsofgroupsviathequotientofa groupbyanormalsubgroup 132 4.2. Universalmappingpropertyofanexternaldirectproductofgroups 136 4.3. Universalmappingpropertyofadirectproductofgroups 136 4.4. Universalmappingpropertyofanexternaldirectsumofabelian groups 138 4.5. Universalmappingpropertyofadirectsumofabeliangroups 139 4.6. Factorizationofhomomorphismsofringsviathequotientofaring byanideal 146 4.7. Substitutionhomomorphismforpolynomialsinoneindeterminate 150 4.8. Substitutionhomomorphismforpolynomialsinn indeterminates 156 4.9. Asquarediagram 193 4.10. Diagramsobtainedbyapplyingacovariantfunctoranda contravariantfunctor 193 4.11. Universalmappingpropertyofaproductinacategory 195 4.12. Universalmappingpropertyofacoproductinacategory 197 5.1. ExampleofanilpotentmatrixinJordanform 231 5.2. PowersofthenilpotentmatrixinFigure5.1 232 6.1. Universalmappingpropertyofatensorproduct 261 6.2. Diagramsforuniquenessofatensorproduct 261 xi