BasicAlgebra Digital Second Editions By Anthony W. Knapp Basic Algebra Advanced Algebra Basic Real Analysis, with an appendix “ElementaryComplex Analysis” Advanced Real Analysis Anthony W. Knapp BasicAlgebra Along with a Companion VolumeAdvancedAlgebra Digital Second Edition, 2016 Published by the Author East Setauket, New York AnthonyW.Knapp 81UpperSheepPastureRoad EastSetauket, N.Y.11733–1729, U.S.A. Emailto: [email protected] Homepage:www.math.stonybrook.edu/ aknapp ∼ Title: BasicAlgebra Cover: Constructionofaregularheptadecagon,thestepsshownincolorsequence;seepage505. MathematicsSubjectClassification(2010): 15–01,20–01,13–01,12–01,16–01,08–01,18A05, 68P30. FirstEdition,ISBN-13978-0-8176-3248-9 c2006AnthonyW.Knapp " PublishedbyBirkha¨userBoston DigitalSecondEdition,nottobesold,noISBN c2016AnthonyW.Knapp " PublishedbytheAuthor Allrightsreserved. Thisfileisadigitalsecondeditionoftheabovenamedbook.Thetext,images, andotherdatacontainedinthisfile,whichisinportabledocumentformat(PDF),areproprietaryto theauthor,andtheauthorretainsallrights,includingcopyright,inthem.Theuseinthisfileoftrade names,trademarks,servicemarks,andsimilaritems,eveniftheyarenotidentifiedassuch,isnot tobetakenasanexpressionofopinionastowhetherornottheyaresubjecttoproprietaryrights. AllrightstoprintmediaforthefirsteditionofthisbookhavebeenlicensedtoBirkhäuserBoston, c/oSpringerScience+BusinessMediaInc., 233SpringStreet, NewYork, NY10013, USA,and thisorganizationanditssuccessorlicenseesmayhavecertainrightsconcerningprintmediaforthe digitalsecondedition. Theauthorhasretainedallrightsworldwideconcerningdigitalmediafor boththefirsteditionandthedigitalsecondedition. Thefileismadeavailableforlimitednoncommercialuseforpurposesofeducation,scholarship,and research,andforthesepurposesonly,orforfairuseasunderstoodintheUnitedStatescopyrightlaw. Usersmayfreelydownloadthisfilefortheirownuseandmaystoreit,postitonline,andtransmitit digitallyforpurposesofeducation,scholarship,andresearch.TheymaynotconvertitfromPDFto anyotherformat(e.g.,EPUB),theymaynoteditit,andtheymaynotdoreverseengineeringwithit. Intransmittingthefiletoothersorpostingitonline,usersmustchargenofee,normaytheyinclude thefileinanycollectionoffilesforwhichafeeischarged. Anyexceptiontotheserulesrequires writtenpermissionfromtheauthor. ExceptasprovidedbyfairuseprovisionsoftheUnitedStatescopyrightlaw,noextractsorquotations fromthisfilemaybeusedthatdonotconsistofwholepagesunlesspermissionhasbeengrantedby theauthor(andbyBirkhäuserBostonifappropriate). Thepermissiongrantedforuseofthewholefileandtheprohibitionagainstchargingfeesextendto anypartialfilethatcontainsonlywholepagesfromthisfile,exceptthatthecopyrightnoticeonthis pagemustbeincludedinanypartialfilethatdoesnotconsistexclusivelyofthefrontcoverpage. Suchapartialfileshallnotbeincludedinanyderivativeworkunlesspermissionhasbeengranted bytheauthor(andbyBirkhäuserBostonifappropriate). InquiriesconcerningprintcopiesofeithereditionshouldbedirectedtoSpringerScience+Business MediaInc. iv ToSusan and ToMyChildren,SarahandWilliam, and ToMyAlgebraTeachers: RalphFox,JohnFraleigh,RobertGunning, JohnKemeny,BertramKostant,RobertLanglands, GoroShimura,HaleTrotter,RichardWilliamson CONTENTS Contentsof AdvancedAlgebra x PrefacetotheSecondEdition xi PrefacetotheFirstEdition xiii ListofFigures xvii DependenceAmongChapters xix StandardNotation xx GuidefortheReader xxi I. PRELIMINARIESABOUTTHEINTEGERS, POLYNOMIALS,ANDMATRICES 1 1. DivisionandEuclideanAlgorithms 1 2. UniqueFactorizationofIntegers 4 3. UniqueFactorizationofPolynomials 9 4. PermutationsandTheirSigns 15 5. RowReduction 19 6. MatrixOperations 24 7. Problems 30 II. VECTORSPACESOVERQ,R,ANDC 33 1. Spanning,LinearIndependence,andBases 33 2. VectorSpacesDefinedbyMatrices 38 3. LinearMaps 42 4. DualSpaces 50 5. QuotientsofVectorSpaces 54 6. DirectSumsandDirectProductsofVectorSpaces 58 7. Determinants 65 8. EigenvectorsandCharacteristicPolynomials 73 9. BasesintheInfinite-DimensionalCase 78 10. Problems 82 III. INNER-PRODUCTSPACES 89 1. InnerProductsandOrthonormalSets 89 2. Adjoints 99 3. SpectralTheorem 105 4. Problems 112 vii viii Contents IV. GROUPSANDGROUPACTIONS 117 1. GroupsandSubgroups 118 2. QuotientSpacesandHomomorphisms 129 3. DirectProductsandDirectSums 135 4. RingsandFields 141 5. PolynomialsandVectorSpaces 148 6. GroupActionsandExamples 159 7. SemidirectProducts 167 8. SimpleGroupsandCompositionSeries 171 9. StructureofFinitelyGeneratedAbelianGroups 176 10. SylowTheorems 185 11. CategoriesandFunctors 189 12. Problems 200 V. THEORYOFASINGLELINEARTRANSFORMATION 211 1. Introduction 211 2. DeterminantsoverCommutativeRingswithIdentity 215 3. CharacteristicandMinimalPolynomials 218 4. ProjectionOperators 226 5. PrimaryDecomposition 228 6. JordanCanonicalForm 231 7. ComputationswithJordanForm 238 8. Problems 241 VI. MULTILINEARALGEBRA 248 1. BilinearFormsandMatrices 249 2. SymmetricBilinearForms 253 3. AlternatingBilinearForms 256 4. HermitianForms 258 5. GroupsLeavingaBilinearFormInvariant 260 6. TensorProductofTwoVectorSpaces 263 7. TensorAlgebra 277 8. SymmetricAlgebra 283 9. ExteriorAlgebra 291 10. Problems 295 VII. ADVANCEDGROUPTHEORY 306 1. FreeGroups 306 2. SubgroupsofFreeGroups 317 3. FreeProducts 322 4. GroupRepresentations 329 Contents ix VII. ADVANCEDGROUPTHEORY (Continued) 5. Burnside’sTheorem 345 6. ExtensionsofGroups 347 7. Problems 360 VIII.COMMUTATIVERINGSANDTHEIRMODULES 370 1. ExamplesofRingsandModules 370 2. IntegralDomainsandFieldsofFractions 381 3. PrimeandMaximalIdeals 384 4. UniqueFactorization 387 5. Gauss’sLemma 393 6. FinitelyGeneratedModules 399 7. OrientationforAlgebraicNumberTheoryand AlgebraicGeometry 411 8. NoetherianRingsandtheHilbertBasisTheorem 417 9. IntegralClosure 420 10. LocalizationandLocalRings 428 11. DedekindDomains 437 12. Problems 443 IX. FIELDSANDGALOISTHEORY 452 1. AlgebraicElements 453 2. ConstructionofFieldExtensions 457 3. FiniteFields 461 4. AlgebraicClosure 464 5. GeometricConstructionsbyStraightedgeandCompass 468 6. SeparableExtensions 474 7. NormalExtensions 481 8. FundamentalTheoremofGaloisTheory 484 9. ApplicationtoConstructibilityofRegularPolygons 489 10. ApplicationtoProvingtheFundamentalTheoremofAlgebra 492 11. ApplicationtoUnsolvabilityofPolynomialEquationswith NonsolvableGaloisGroup 493 12. ConstructionofRegularPolygons 499 13. SolutionofCertainPolynomialEquationswithSolvable GaloisGroup 506 14. ProofThatπ IsTranscendental 515 15. NormandTrace 519 16. SplittingofPrimeIdealsinExtensions 526 17. TwoToolsforComputingGaloisGroups 532 18. Problems 539 x Contents X. MODULESOVERNONCOMMUTATIVERINGS 553 1. SimpleandSemisimpleModules 553 2. CompositionSeries 560 3. ChainConditions 565 4. HomandEndforModules 567 5. TensorProductforModules 574 6. ExactSequences 583 7. Problems 587 APPENDIX 593 A1. SetsandFunctions 593 A2. EquivalenceRelations 599 A3. RealNumbers 601 A4. ComplexNumbers 604 A5. PartialOrderingsandZorn’sLemma 605 A6. Cardinality 610 HintsforSolutionsofProblems 615 SelectedReferences 715 IndexofNotation 717 Index 721 CONTENTS OF ADVANCED ALGEBRA I. TransitiontoModernNumberTheory II. Wedderburn–ArtinRingTheory III. BrauerGroup IV. HomologicalAlgebra V. ThreeTheoremsinAlgebraicNumberTheory VI. ReinterpretationwithAdelesandIdeles VII. InfiniteFieldExtensions VIII. BackgroundforAlgebraicGeometry IX. TheNumberTheoryofAlgebraicCurves X. MethodsofAlgebraicGeometry
Description: