ebook img

Baryonic Tully-Fisher Relation for Extremely Low Mass Galaxies PDF

0.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Baryonic Tully-Fisher Relation for Extremely Low Mass Galaxies

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed2February2008 (MNLATEXstylefilev2.2) Baryonic Tully-Fisher Relation for Extremely Low Mass Galaxies Ayesha Begum1⋆, Jayaram N. Chengalur2, I. D. Karachentsev3 and M. E. Sharina3 1InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,Cambridge,CB30HA,UK 8 2NationalCentreforRadioAstrophysics,PostBag3,Ganeshkhind,Pune411007,India 0 3SpecialAstrophysicalObservatory,NizhniiArkhys369167,Russia 0 2 n a J 3 ABSTRACT 2 We study Tully Fisher relations for a sample that combines extremely faint (MB < −14.) galaxies along with bright (i.e. ∼ L∗) galaxies. Accurate (∼ 10%) distances, I band pho- ] h tometry,andB-Vcolorsareknownforthemajorityofthegalaxiesinoursample.Thefaint p galaxiesaredrawnfromtheFaintIrregularGalaxyGMRTsurvey(FIGGS),andwehaveHI - rotationvelocitiesderivedfromaperturesynthesisobservationsforallofthem.Forthefaint o galaxies,we findthateventhoughthe medianHIandstellar massesare comparable,the HI r t masscorrelatessignificantlybetterwiththecircularvelocityindicatorsthanthestellarmass. s a Wealsofindthatthevelocitywidthatthe20%level(W20)correlatesbetterwithmassthanthe [ rotationvelocity,althoughthedifferenceisnotstatisticallysignificant.Thefaintgalaxieslie systematicallybelowtheIbandTFrelationdefinedbybrightgalaxies,andalsoshowsignif- 1 icantlymoreintrinsicscatter.Thisimpliesthattheintegratedstarformationinthesegalaxies v hasbeenbothlessefficientandalsolessregulatedthaninlargegalaxies.Weestimatethein- 6 trinsicscatterofthefaintgalaxiesabouttheIbandTFtobe∼1.6mag.Wefindthatwhilethe 0 6 faintenddeviationisgreatlyreducedinBaryonicTully-Fisher(BTF)relations,theexistence 3 ofabreakatthefaintendoftheBTFissubjecttosystematicssuchastheassumedstellarmass . to light ratio. If we assume that there is an intrinsic BTF and try to determine the baryonic 1 massbysearchingforprescriptionsthatleadtothetightestBTF,wefindthatscalingtheHI 0 massleadsto a muchmoresignificanttighteningthanscalingthe stellar masstolightratio. 8 Themostsignificanttighteningthatwefindhowever,isifwescaletheentirebaryonicmass 0 : of the faint (but not the bright) galaxies. Such a scenario would be consistent with models v wheredwarf(butnotlarge)galaxieshavealargefractionofdarkor“missing”baryons.Inall Xi caseshowevertheminimumintheχ2 curveisquitebroadandthecorrespondingparameters arepoorlyconstrained. r a Key words: galaxies: dwarf – galaxies: kinematics and dynamics – galaxies: individual: FIGGSradiolines:galaxies 1 INTRODUCTION galaxymasses.Reheatingpriortotheepochofreionizationwould leadtosmallhaloshavingareducedbaryonfraction(e.g.Gnedin Oneofthestringenttestsofgalaxyformationmodelsistheirabil- (2000)), and small dark matter halos are also expected to easily itytoreproducethetightnessoftheTully-Fisher(TF)relation,i.e. losebaryonsbecauseofenergyinputfromthefirstburstofstarfor- thefactthattherotationvelocityandabsolutemagnitudeofbright mationandsupernovawinds(e.g.Tassisetal.2007;Dekel&Woo spiralgalaxiesaretightlycorrelated.Forsuchgalaxies,theintrinsic 2003;Efstathiou2000).Largegalaxiesontheotherhandaremore scatterintheIbandTFhasbeenestimatedtobeassmallas0.2mag abletokeeptheiroriginalshareofbaryons.Consistentwiththisex- (e.g.Sakaietal.(2000)),whileVerheijen(2001)arguesthatthere ′ pectation,observationsshowthatdwarfgalaxieswithrotationve- isprobablynointrinsicscatterintheK bandTFrelation.Thisim- locitieslessthan∼90kms−1liebelowtheTFrelationdefinedby pliesthatthedarkandvisible(i.e.stellar)mattercontentofgalax- brightergalaxies(McGaughetal.2000;Begum&Chengalur2004; ies are tightly correlated, or, if one assumes that the visible mat- McGaugh,S.2005),i.e. they areunder luminous for the velocity tertracesthebulkofthebaryons,thatthenonbaryonicandbary- width.Ontheotherhand,Gehaetal.(2006)usinganindependent onic content of galaxies are tightly correlated. Theoretically, one SDSSbasedsampleofdwarfgalaxiesdidnotfindanybreakinthe wouldnotexpectthiscorrelationtoholdallthewaydowntodwarf IbandTFrelation,although,inagreementwithearlierstudiesthey findanincreasedscatterabouttheTFrelationatlowluminosities. ⋆ E-mail:[email protected] Further,asfirstnotedbyMcGaughetal.(2000)the“break”seen 2 Begum et al. atthefaintendoftheBbandTFrelationisremovedifoneworks malizedtotheHolmbergradiusofthegalaxy.Column(10)theB-V withthetotalbaryonicmass(i.e.thesumofstellarandgas)instead colour, Column (11)the velocity widthof theglobal HI profileat oftheluminosity. 20%level,derivedfromtheGMRTdata,Column(12)thedistance AccurateextensionsoftheTFrelationtofaintdwarfgalaxies tothegalaxyfromKarachentsevetal.(2004)andColumn(13)the poses anumber of practical problems. Firstly, dwarf galaxies are method used to derive the distance e.g. the tip of the red giant largely a field population, and very few of them have accurately branch(rgb),Tully-Fisherrelation(tf),theHubblerelation(h)and knowndistances.Secondly,beingfaint,andlargelyoflowsurface themember ship of the group (grp). 22 of the 29 galaxies in our brightness, accuratephotometryisdifficult.Finally,incontrastto samplehaveindependent distancesmeasuredusingtheTRGB.In thesituationforbrightspirals,thepeakrotationalvelocitiesoffaint our analysis below, where appropriate, wetreat the galaxieswith (MB > −14) dwarf galaxies is generally comparable in magni- independentdistancesseparatelyfromthosewhichdonot. tudetothevelocitydispersionofthegas(e.g.Begumetal.2003; Thesourcesoftheabsolutemagnitudesofoursamplegalaxies Begum&Chengalur 2004).Insuchasituationitisunclearifthe arelistedinthetable.Thephotometryforthosegalaxiesforwhich velocitywidth(e.g.atthe20%level,W20,whichisthecommonly there isno separate notation is froman HST(WFPC2and ACS) used indicator of the circular velocity in TF relations), is a good surveyofLocalVolumedwarfgalaxies.Thephotometryofgalax- tracerofthecircularvelocity. ieswithlargeangulardiameterswasdoneusingSDSSimages.The InthispaperwediscusstheTFrelationusingadatasetwhich HSTphotometrywasdoneusingtherecipesandequationsgivenin addressalloftheaboveissues.Accurate(∼10%)TRGBdistances Holtzmanetal.(1995)andSiriannietal.(2005).Detailsonboththe areknowntomostofthegalaxiesinoursample,andwealsouseac- HSTand SDSSbased photometry can befound in(Sharinaetal. curateIbandmagnitudes.Finallyallofthegalaxieshavebeenob- (2007)).Photometryforthefewgalaxiesinoursamplethatarenot servedinHIusingtheGiantMeterwaveRadioTelescope(GMRT) alsoinSharinaetal.(2007)wasdoneusingSDSSimagesandan as part of the FIGGS survey (see Begumetal. (2008)). Pressure identicalproceduretothatfollowedbySharinaetal.(2007).Trans- correctedrotationcurvesareavailableforallofthegalaxies;these formation to the standard Johnson-Cousins system was done us- can be compared with W20 to see which is the better observable ingtheempiricalcolortransformationsgivenbyJordietal.(2006). to use for TF studies. As a comparison sample we use the sam- Note that these magnitudes are those measured within a limiting pleofbrightgalaxiesforwhichCephieddistancesweremeasured diameter(tabulatedinSharinaetal.(2007)).Inprincipleonecould aspartoftheHSTkeyprojectontheextragalacticdistancescale insteaduseextrapolatedtotalmagnitudesderivedfromassumingan (Sakaietal.(2000)). exponential stellar disk. However, in practice, the surface bright- nessdistributionispoorly fitbyanexponential disk, andthereis substantial uncertainty in the scale length and location of center of thestellardisk.Consequently, theerrorsintheextrapolated to- 2 THEDWARFGALAXYSAMPLE tal magnitudes are large, and, in fact, will agree within the error ThedwarfgalaxysampleisapartofanHIimagingstudyoffaint barswiththoselistedinTable1.Wehenceusethemagnitudesas dwarf galaxies with the GMRT − the Faint Irregular Galaxies tabulatedbySharinaetal.(2007). GMRT Survey (FIGGS; Begumetal. (2008)). The FIGGS sam- As a comparison bright galaxy sample we use a sample of ple is a systematically selected subsample of the Karachentsev 21galaxieswithCepheiddistancestakenfromSakaietal.(2000). et al.(2004) catalog of galaxies within 10 Mpc (see Begumetal. Rotationcurvesareavailableinliteratureforonlyfewgalaxiesin (2008) for detailson thesample selectionand observations). The thissample,hence,weusetheinclinationcorrectedvelocitywidths FIGGS galaxies represent the extreme low-mass end of the dIrr at 20% level of the peak emission ( W20), given in Sakaietal. population,withamedianMB ∼−13andamedianHImass∼3× (2000). The velocity widths were corrected for the line broaden- 107 M⊙.OurGMRTobservationsshowthat,contrarytothegen- ingduetotheturbulentvelocitydispersionusingtheprescription eralbeliefthatextremelyfaintdIrrgalaxieshave“chaotic”veloc- giveninVerheijen&Sancisi(2001).Notethatalthoughthereexist ityfields(Loetal.(1993)),mostofthemhavecoherentlargescale severalintermediatemassdwarfgalaxiessamples(e.g.Schombert velocitygradients(seee.g.Begumetal.(2006)).Formanygalax- et al. 1997) that could have been used as templates, we have re- ies, these large scale gradients are consistent with the systematic strictedouranalysisheretogalaxysampleswithaccurate,Hubble rotation. Rotation curves were derived using a tilted ring model, flowindependentdistanceestimates. details can be found in Begum et al.(2008, in preparation). For thecurrentstudy,wehaveconsideredonlythosegalaxiesfromthe FIGGSsamplewhicharewellresolved(i.e.aremorethan6inde- 3 RESULTSANDDISCUSSION pendentbeamsacross)andforwhichtiltedringanalysisgavesen- siblefitstothedata.Examplescanbeseenin,fore.g.Begumetal. Table2 liststhe correlationcoefficients between different indica- (2003); Begum&Chengalur (2004); Begumetal. (2005, 2006). torsofthemassandthecircularvelocity.WeuseeitherVrotorW20 ThegalaxiesfromtheFIGGSsampleselectedforthecurrentstudy aftercorrectionforthelinebroadeningduetotheturbulentveloc- aregiveninTable1.Thecolumnsareasfollows:Column(1)the itydispersion usingtheprescriptiongiveninVerheijen&Sancisi nameofthegalaxy. Column(2)Vrot,therotationvelocityatthe (2001).Thestellarmass,M∗ wascomputedusingthestellarmass lastmeasuredpointoftherotationcurve,correctedforthepressure to light ratio given by Belletal. (2003) for the case of a “diet” support,(see e.g. Begumetal. 2003; Begum&Chengalur 2004). SalpeterIMF.Twoestimatesofthetotalbaryonicmasswereused; Column(3)Vder,thederivedrotationvelocityatthelastmeasured the first (Mbar) was computed using the sum of the stellar mass point of therotation curve, Column(4) Verr, theerror on thede- and 1.33 times the HI mass to correct for primordial He (Ott et rived velocity, Column(5) the absolute B magnitude, Column(6) al.(2001);Coteetal.(2000)).Nocorrectionforthemoleculargas theabsoluteImagnitude.Column(7)theHImassderivedfromthe was made, which is probably justifiable for the FIGGS sample, GMRTdata,Column(8)theluminosityinBband,Column(9)the since dwarf galaxies do not seem to have a substantial reservoir extent of the HI disk at a level of NHI = 1×1019cm−2, nor- of molecular gas (Taylor,Kobulnicky&Skillman (1998)). While BTF RelationforExtremelyLow MassGalaxies 3 Table1.FIGGSdata Galaxy Vrot Vder Verr MB MI MHI LB DDHHIo B-V W20 D Method (kms−1) (kms−1) (kms−1) (mag) (mag) (106M⊙) (106L⊙) (mag) (kms−1) (Mpc) UGC685 51.67 45.84 2.75 −14.31 −15.07 56.15 82.41 1.6 0.52 74.0 4.5 rgb KKH6 27.98 19.93 3.66 −12.42 −13.53 10.18 14.45 2.9 0.43 40.0 3.73 rgb KK14a 21.32 19.27 1.52 −12.13 −12.84 21.92 11.06 1.5 0.42 36.5 7.2 grp KKH11a 56.29 52.39 3.14 −13.35 −14.06 52.87 34.04 4.2 0.40 106.0 3.0 grp KK41 32.3 21.91 1.97 −14.06 −15.27 67.19 65.46 3.3 0.63 55.0 3.9 rgb UGCA92 37.08 31.00 3.00 −15.65 −15.71 156.05 283.13 4.5 0.15 70.0 3.01 rgb KK44 20.00 7.00 2.10 −11.85 −13.03 12.0 8.57 2.3 0.58 32.6 3.34 rgb KKH34 20.11 10.50 1.38 −12.30 −13.23 10.44 12.94 2.6 0.28 25.0 4.6 rgb UGC3755 20.19 13.05 2.73 −14.90 −16.00 73.99 141.90 1.7 0.55 49.0 6.96 rgb DDO43 36.04 30.72 2.16 −14.75 −15.49 203.02 123.59 2.8 0.45 50.0 7.8 rgb KK65 18.49 16.71 2.90 −14.29 −15.57 38.85 91.20 2.3 0.54 50.2 7.62 rgb UGC4115 58.54 56.08 2.58 −14.27 −15.95 285.52 79.43 4.0 0.47 105.0 7.5 rgb UGC5456 39.75 37.55 5.29 −15.08 −16.23 58.95 167.49 1.5 0.39 88.0 5.6 rgb UGC6145a 40.90 36.94 2.90 −13.14 −13.85 27.02 28.05 1.6 0.40 52.0 7.4 h NGC3741 46.70 46.70 2.50 −13.13 −13.94 157.99 27.79 8.8 0.37 101.0 3.0 rgb UGC7242 39.90 35.11 3.03 −14.06 −14.77 45.75 65.46 2.1 0.40 74.0 5.4 rgb KK144 27.82 22.38 3.95 −12.59 −14.32 81.14 16.90 3.1 0.38 49.0 6.3 h DDO125 22.92 14.61 2.74 −14.16 −15.24 31.87 71.77 1.7 0.51 42.0 2.5 rgb UGC8055 65.72 60.25 2.72 −15.49 −16.46 782.63 244.34 3.0 0.37 95.5 17.4 tf UGC8215 19.95 12.37 4.00 −12.26 −13.30 21.41 12.47 3.5 0.38 31.0 4.5 rgb UGC8508 40.10 31.17 2.30 −12.98 −13.99 29.07 24.21 3.3 0.46 64.5 2.6 rgb DDO181 29.92 22.17 4.00 −13.03 −13.90 27.55 25.35 3.3 0.46 49.0 3.1 rgb DDO183 24.66 21.35 1.85 −13.17 −13.97 25.90 28.84 2.7 0.42 48.0 3.24 rgb UGC8833 26.68 20.65 3.01 −12.42 −13.27 15.16 14.45 2.3 0.42 40.0 3.2 rgb P51659a 30.50 22.00 2.58 −11.83 −12.54 52.99 8.39 2.7 0.40 55.5 3.6 rgb KK246 35.18 29.93 4.00 −13.69 −14.87 63.39 46.47 2.9 0.58 80.0 7.83 rgb KK250b 50.00 50.00 3.00 −14.54 −16.14 121.0 120.26 3.2 0.91 110.0 5.6 grp KK251b 38.00 34.00 4.00 −13.72 −14.32 78.0 44.05 2.6 0.37 79.0 5.6 grp DDO210c 17.00 8.00 2.00 −11.09 −11.90 2.80 4.30 1.3 0.24 29.1 1.0 rgb aIbandmagnitudecomputedusingtherelation(B-V)=0.85*(V-I)(Makarova(1999))assumingB-V=0.4andBmagnitudesfromKarachentsevetal.(2004). bIbandmagnitudefromBegum&Chengalur(2004).cIbandmagnitudefromLeeetal.(1999). themoleculargasprobablymakesasubstantialcontributiontothe FIGGSsamplethan for the combined HST+FIGGSsample. This total gas mass in the case of the bright spirals in the Sakai et al. is partly because of the substantially larger baseline of the com- (2000) sample, the baryonic mass of these systems is dominated bined sample, but as as shown below, it is alsopartly because of bythestellarcontribution, andtheerror wemakeinignoringthe genuinely increased scatter in the low mass range. Finally, W20 molecular gas is likely to be subsumed by the uncertainty in the correlatesbetterwiththemassindicators thanVrot,although the stellarmasstolightratio.Thesecondestimateofthebaryonicmass correlationcoefficientsoverlapwithintheerrorbars. (Mbar1)usesthesameestimateofthetotalgasmassasbefore,but Thebestfitregressionoflog(MI)onlog(W20)computedus- thestellarmasswascomputedfromBelletal.(2003)foraBottema ingabivariateleastsquaresfitforthedatafromSakaietal.(2000) IMF.ForagivenB-Vcolor,themasstolightratiofortheSalpeter giveslog(MI)=-8.66(0.67)log(W20)+0.231(1.7)andisshown “lite”IMF and BottemaIMF differ only by amultiplicative con- in Figure 1 as a solid line. The error bars account for errors in stant,so thecorrelationbetween thestellarmasscomputed using both the distance measurement and the photometry. The two dif- aBottemaIMFandthecircularvelocityindicatorsareidenticalto ferent panels show where the FIGGSgalaxies lie with respect to thatcomputedusingtheSalpeter“lite”IMF.ThesetwoIMFswere thisline,inPanel[A]W20 isusedastheestimatorofthecircular chosenasbeingrepresentativeoftwoextremesofthestellarmass velocityandinPanel[B]oneusesVrot.Ascanbeseen,relativeto to light ratio(Belletal. (2003)). The correlation coefficient error theTFrelationforbrightgalaxies,theFIGGSgalaxiesareunder- barswerecomputedusingbootstrapresampling.Thelistedvalues luminous for their velocity width. However, the offset is signifi- are for the entireFIGGS sample; if one uses only the subsample cantlylargerwhenoneusesVrot(0.93±0.06mag)thanwhenone of22galaxieswithTRGBdistances,thecomputedcorrelationco- usesW20(0.31±0.06)mag.IfonedoesaregressionfitusingW20 efficientsagreewithintheerrorbarswiththetabulatedvalues.For tothe entireFIGGS+HSTsample, thebest fit relationislog(MI) the galaxies in the FIGGS sample alone, a few interesting points = -8.77 (0.1) log(W20)+0.741(0.3). The scatter of the FIGGS emerge.ThefirstisthateventhoughtheHIandstellarmassesof galaxies about this relation is ∼ 1.6mag, while that of the HST thesegalaxiesarecomparable(themedianratiooftheHItostel- samplegalaxiesis∼0.36mag.ThescatterfortheFIGGSgalaxies lar mass is∼ 1.25) theHI mass issignificantlybetter correlated ismuchlargerthanthetypical estimatedtotalmeasurement error withthecircularvelocityindicatorsthanthestellarmass.Infact, of∼ 0.37mag,(fromtheerrorsinthedistancemeasurement,the theHImasscorrelateswiththecircularvelocityindicatorsatleast photometry and the error in the velocity width scaled by the TF as well the baryonic mass estimates. The second isthat the error slope) and indicates that essentially all of the observed scatter at bars in the correlation coefficients are significantly larger for the thefaintendisintrinsic. 4 Begum et al. A B Figure1.[A]TheabsoluteIbandmagnitudesplottedasafunctionofthelogoftherotationvelocityVrotfortheFIGGSsampleandW20(inclinationand turbulencecorrected)forgalaxiesfromtheSakaietal.(2000)sample.[B]Sameas[A]exceptthattheabscissaislog(W20)forboththeFIGGSandSakaiet al.(2000)samples.Ascanbeseen,relativetotheTFrelationforbrightgalaxies,theFIGGSgalaxiesareunder-luminousfortheirvelocitywidth. Table2.CorrelationCoefficients A B FIGGS FIGGS+HST log(Vrot) log(W20) log(W20) log(MI) -0.505(0.15) -0.629(0.10) -0.931(0.01) log(M∗) 0.459(0.16) 0.596(0.11) 0.928(0.02) log(MHI) 0.683(0.10) 0.733(0.07) 0.910(0.01) log(Mbar) 0.631(0.12) 0.732(0.08) 0.942(0.01) log(Mbar1) 0.665(0.11) 0.741(0.07) 0.943(0.01) The systematic deviation from and the increased scatter Figure3.ScatteraboutthecombinedbestfitBTFfortheFIGGS(Panel around, theTF relation set by bright galaxies, impliesthat dwarf [A])andHST(Panel[B])galaxies.TheBTFusedtogeneratethisfigureis galaxies have been relatively less efficient at forming stars, and thatbetweentheBaryonicmassderivedfromtheSalpeter“lite”IMFand thattherehasalsobeconsiderablymorestochasticityintheirinte- log(W20). Different choices ofIMF orcircular velocity indicator donot qualitatively affecttheplot.Thescatterhasbeenscaledbythecombined gratedstarformationefficiencies.Leeetal.(2007)findthatdwarf measurementerrors. galaxies(i.ewithMB >−15)showalargerscatterinthespecific star formation rate as compared to bright galaxies. They suggest that this could be because the processes that regulate star forma- deviatesmuch lessfromthisrelationthatitdoesfromtheIband tion in bright spirals are not operative in dwarfs, consistent with TFrelation.TheaveragedeviationoftheFIGGSgalaxiesfromthe the finding of Begumetal. (2006) of a lack of asimple relation- BTFrelationsetbybrightspiralsis-0.16(0.02),-0.11(0.02)forthe shipbetweengascolumndensityandstarformationrateindwarf Salpeter“lite”andBottemaIMFsandusingVrotasthecircularve- galaxies.Fig.1indicatesthatevenintegrationovertimeisnotsuf- locityindicator,and0.09(0.02),0.09(0.02)forthesametwoIMFs ficienttoremovethisscatter,i.e.eventheintegratedstarformation but with W20 as the circular velocity indicator. Clearly, whether rateofdwarfgalaxiesshowssubstantiallymorescatterthanthatof one sees a deviation from the BTF at the faint end seems domi- brightspirals.InarecentstudyusingasampleofSDSSgalaxies, natedbysystematicuncertainties(IMF,choiceofcircularvelocity Gehaetal.(2006)foundasimilarincreaseinscatteraroundtheI indicator).Ontheotherhand,theincreasedscatterabouttheBTF bandTFrelationatlowluminosities.However,incontrasttowhat atthefaintmassendisindependentofthechoiceofIMForcircular wefindheretheydonotfindthatfaintgalaxiesaresystematically velocityindicator.Fig.3)comparesthescatteraboutthecombined under-luminous.Thereasonforthisdiscrepancyisunclear,though best fit BTF for the HST and FIGGS galaxies, the difference in wedonotethatweareusinggalaxieswithaccuratelymeasureddis- scatterisstriking.DifferentchoicesofIMForcircularvelocityin- tances,whileGehaetal.(2006)usedHubbleflowbaseddistances dicatordonotqualitativelychangetheplot. fortheirgalaxies. As discussed above, systematic uncertainties limit the mea- As mentioned in the introduction, the deviation of dwarf surement of the BTF. Numerous authors (e.g. Pfenniger&Revaz galaxiesfromtheBbandTFrelationwasoneoftheprimarymoti- (2005); McGaugh,S. (2005) have tried to approach this problem vationsforsearchingforarelationbetweenthetotalbaryonicmass alongthereversedirection,viz.tousetheBTFitselftodetermine andthevelocitywidth,i.e.thebaryonicTullyFisher(BTF)relation one or both of the scaling of the HI mass to the total gas mass (McGaughetal.(2000)).TheBTFrelationfortheHSTsampleis and the stellar mass to light ratio. In this approach, one assumes showninFig.2asasolidline.Ascanbeseen,theFIGGSsample that an intrinsic BTF relation exists, and that the right choice of BTF RelationforExtremelyLow MassGalaxies 5 A B Figure2.ThesolidlinesshowtheBTFforthebrightHSTsample,Panel[A]isforaSalpeter“lite”IMF,whilePanel[B]isforaBotemmaIMF.Thehollow circlesareforFIGGSgalaxieswithoutTRGBdistances,thefilledcirclesareFIGGSgalaxieswithTRGBdistancesandthefilledsquarearegalaxiesfromthe HSTsample. stellar mass to light ratio and/or HI mass scaling will minimize the scatter of the observed data about the relationship. Pfenniger &Revaz(2005)foundthattheBTFrelationisoptimallyimproved whentheHImassismultipliedbyafactor of3; however theac- tualbestfitvalueispoorlyconstrained,andscalefactorsofupto ∼11leadtoatighteningoftheBTF.Allowingafreescalingofthe HImassispromptedbymodelswhichhaveadarkbaryoniccom- ponentwhosedistributioniscorrelatedwiththatofHI(e.gHoek- straetal.2001).Thesemodelsinturnarebasedonthepossibility thatsomeofthedarkmatterinthehalosofgalaxiesmaybeinthe formofcold,densegasclouds(Gerhard&Silk(1996); Pfenniger & Combes (1994)). Many observations based on dynamical and stabilityanalysisindicatethatgalacticdisksmaybemoremassive thaninferredfromitsluminousmass(Fuchs,B.(2003);Masset& Bureau(2003);Pfenniger&Revaz(2005)).Further,fromtheoret- icalmodellingandN-bodysimulations,Pfenniger&Revaz(2004) foundthatifdisksaremarginallystablewithrespecttobendingin- stabilities,themasswithintheHIdisksmustbeamultipleofthat Figure4.ModelswithHImassscalefactorasafreeparameter.Thegraph showsχ2 asafunctionoftheHImassscalefactor. Theminimumχ2 is detectedinHIandstars.WenotethatsincethestellarmassandHI massarehighlycorrelated(correlationcoefficient∼0.91between foramassscalefactor∼ 6.7.Thehorizontallineshowsthethresholdχ2 fora95%significancethatthemodelwithavariableHImassscalefactor log(Mstar) and log(MHI), simultaneous minimization of both the providesabetterfittothedata. stellar mass to light ratio and the scale factor for the HI mass is degenerate. So instead we first allow the HI mass scale factor to varykeepingthemasstolightratioofthestellardiskfixed(Fig.4) LargevaluesofFindicateastatisticallysignificantimprove- andthenallowthestellarmasstolightratiotovarykeepingtheHI mentinthefit.ApplyingtheF-testtotheχ2 numbersaboveindi- massscalefactorfixed(Fig.5).InthecaseofavariableHImass scalefactor(Fig.4),thereisabroadminimumintheχ2,arounda catesthatthisdecreaseissignificantatthe∼2%level,i.e.thereisa scalefactorof∼ 6.7. Theminimumχ2 is357.2,ascomparedto 2%probabilitythataHIscalefactorof6.7doesnotprovideabetter fittothedata.ThehorizontallineinFig.4indicatesthethreshold 402.3forthecaseinwhichtheHImassscalefactoriskeptat1.33. valueof χ2 for a5% significance. Ascanbe seenthisleadstoa Sincethenumberofparametershasbeenincreased,adecreasein theχ2istobeexpected.Thesignificanceofthedecreasecanbees- relativelybroadrangeinthescalefactor,i.e.from∼ 3.0−13.5. IfoneexcludestheFIGGSgalaxieswithoutTRGBdistances,the timatedusingtheF-test.Fornestedmodelswithν1andν2degrees minimumχ2 occurs atanHImassscalefactor of ∼ 5andhasa opfarfarmeeedtoerms rinestpheectsiveceolynd(pm=odνe1l)−anνd2χ)b2evinaglutehseχe1x2traanndumχb22erroef- ∼5%significance. FormodelswithafixedHImassscalefactorof1.33butvari- spectively,theF-testlooksatthevalue able stellar mass to light ratio, we follow the parametrization of Belletal.(2003)andassumethatthestellarmasstolightratiois (χ12−χ22)/p givenbylog(Γ∗) = α+β(B−V),whereαandβ arefreepa- F = χ22/ν2 rameters.Fig.5showscontoursoftheresultingχ2.Theminimum 6 Begum et al. Figure 6. Models in which the scale factor of the baryonic mass of the galaxies in the FIGGS sample is a free parameter. The graph shows χ2 asafunctionofthebaryonicmassscalefactor.Theminimumχ2isfora massscalefactor∼ 9.2.Thesolidhorizontallineshowsthethresholdχ2 Figure5.Contours ofχ2 asafunction ofthestellarmasstolightratio, fora95%significancethatthemodelwithavariableHImassscalefactor log(Γ∗)=α+β(B−V).ThescalefactorfortheHImasshasbeenkept providesabetterfittothedata.Thedashedhorizontallineisthethreshold fixedat1.33.Thecontourlevelsstartat358andareuniformlyspacedin χ2fora99%significance. stepsof20. χ2(356.3)correspondstoα=−1.51,β =1.20.Forcomparison, α = −0.549,β = 0.824 corresponds totheSalpeter “lite”IMF and α = −0.749,β = 0.824 corresponds to the Bottema IMF. The decrease in the χ2 however is significant only at the ∼ 7% level(ascomparedtothe∼ 2%levelforavariableHImassscale factor). Since the HI mass forms a much larger fraction of the to- tal baryonic mass in the case of galaxies from the FIGGS sam- ple, the greater sensitivity of the goodness of fit to the HI mass scale factor suggests that models in which one has a scale factor forthetotalbaryonicmassofdwarfgalaxieswouldprobablysig- nificantlyimprovethefit.Whilethis(liketheearliertwomodels) isaphenomenological model, it would correspond togalaxy for- Figure7. Baryonic Tully Fisherrelations. Thehollow points are forthe mation models in which dwarf galaxies have a larger fraction of FIGGSgalaxieswithstellarmasstolightratiocomputedusingaSalpeter “dark” (e.g. highly ionized) or missing baryons. For e.g. models “lite”IMF.Forthesolidpointsthetotalbaryonicmasshasbeenincreased which account for the reheating and ionization of the gas during by a factor of 9.2. For the HST galaxies (the cluster of points at large theepochofrecombinationpredictthatlargegalaxiesshouldhave log(W20)) the baryonic mass is not scaled. The two lines show the best essentiallythecosmicbaryonfraction,whilesmallgalaxies(with fitBTFforthesetwocases. circular velocity in the ∼ 20 km/s range) could lose up to 90% oftheirbaryons.Ofcourse,insuchasituation,whenapplyingthe BTFrelationwiththeobservedvelocitywidths,wehavetomake galaxieshasbeenscaledbyafactorof9.18isshowninFig.7.For thefurtherassumptionthatthebaryonlossdoesnotaffecttheob- reference, the original BTF relationwithout this rescaling is also servedvelocitywidth.Theχ2curveforamodelinwhichthescale shown.Rescalingbyafactorof9.18impliesthatover90%ofthe factorofthebaryonicmassoftheFIGGSgalaxiesisafreeparam- originalbaryonicmassis“dark”or“missing”. eter(butthescalefactorforthebaryonicmassoftheHSTsample Tosummarize,wepresentTFrelationsforasamplecombin- iskeptat1.0)isshowninFig.6.Onceagain,theχ2curveshowsa ingextremelyfaintdwarfirregulargalaxiesfromtheFIGGSsurvey broadminimum,howevertheminimumχ2(289.6,forascalefac- andlargespiralgalaxies.FortheFIGGSsamplealone,wefindthat torof9.18)issubstantiallylowerthaninthecasethatonlytheHI thoughthemedianHImassandstellarmassarecomparable,theHI masswasrescaled.TheF-testgivesaprobabilityof∼ 2×10−4 masscorrelateswiththevelocitywidthmuchbetterthanthestellar thatthisreductioninχ2isbychance.ThehorizontallineinFig.6 mass.Distancesareaccuratelyknownforthebulkofthegalaxies indicatesthethresholdvalueof χ2 fora1%significance. Ascan in our sample, and we find that the extremely faint dwarfs show be seen this leads to a relatively broad range in the scale factor, substantialintrinsicscatteraboutboththeIbandTFandtheBTF i.e.from∼ 2.0−28.8. IfoneincludesonlythoseFIGGSgalax- relations.DeviationsfromtheBTFatthefaintendaresensitively ieswithTRGBdistances,theminimumχ2 occursatamassscale dependentonsystematics,e.g.theassumedstellarmasstolightra- factor of ∼ 7.56 and corresponds to a significance of ∼ 10−3. tio. If one assumes that there isan intrinsic baryonic TF relation Thebestfit“BTF”relationafterthebaryonicmassoftheFIGGS onecouldtrytodeterminethetotalbaryonicmassbysearchingfor BTF RelationforExtremelyLow MassGalaxies 7 theprescriptionthatleadstothetightestBTF.Wefindthatchang- PfennigerD.&RevazY.,2005,A&A,431,511. ingthescalefactorofthetotalHImassleadstoamoresignificant Sakai,A.,Jeremy,M.R.etal.,2000,ApJ,529,698 tightening of the BTF than changing the stellar mass to light ra- SharinaM.E.,etal.,2007,arXiv,712,arXiv:0712.1226 tio. Finally, the most significant tightening that we find is when Schombert, J. M.,Pildis,R.A. &Eder, J.A.,1997, ApJS,111, weallowtheentirebaryonicmassofthefaint(butnotthebright) 233 galaxiestoscalebyaconstantfactor.Thisbestfitrelationisfora Sirianni,M.,etal.,2005,PASP,117,1049 scalefactor ∼ 9. Theexact value ishowever poorly constrained, Tassis, K., Kravtsov, A. V. & Gnedin, N. Y., 2007, anyvaluebetween∼ 2−28.8leadstoasignificanttighteningof astro-ph/0609763v2 theBTF. Taylor, C. L., Kobulnicky, H. A. & Skillman, E. D. 1998, A.J.,116,2746-2756. VerheijenM.A.W.,2001,ApJ,563,694 Verheijen,M.A.W.&Sancisi,R.,2001,A&A,370,765 ACKNOWLEDGMENTS TheobservationspresentedinthispaperweremadewiththeGiant MetrewaveRadioTelescope (GMRT).TheGMRTisoperated by theNationalCenterforRadioAstrophysicsoftheTataInstituteof FundamentalResearch. REFERENCES Begum, A., Chengalur, J.N., Karachentsev I. D., Sharina, M. & Serafim,S.2008,MNRASsubmitted. Begum, A., Chengalur, J.N., Karachentsev I. D., Sharina, M. & Serafim,S.2006,MNRAS,365,1220. Begum, A., Chengalur, J.N. & Karachentsev I. D. 2005, A&A, 433,L1 Begum,A.,Chengalur,J.N.&Hopp,U.,2003,NewAstronomy, 8,267 Begum,A&Chengalur,J.N.,2004,A&A,424,509 Bell,E.F.,McIntosh,D.H.,Katz,N.&Weinberg,M.D.,2003, ApJSS,149,289 Cote,S.,Carignan,C.&Freeman,K.C.,2000,AJ,120,3027 Dekel,A.&Woo,J.,2003,MNRAS,344,1131 Efstathiou,G.2000,MNRAS,317,697 Fuchs,B.2003,Ap&SS,284,719 Geha,M.,Blanton,M.R.,Masjedi,M.&West,A.A.,2006,ApJ, 653,240 Gerhard,O.&Silk,J.,1996,ApJ,472,34 GnedinN.Y.,2000,ApJ,542,535 Hoekstra, H., van Albada, T. S. & Sancisi, R., 2001, MNRAS, 323,453 Holtzman, J. A., Burrows, C. J., Casertano, S., Hester, J. J., Trauger,J.T.,Watson,A.M.&Worthey,G.,1995,PASP,107, 1065 Jordi,K.,Grebel,E.K.&Ammon,K.,2006,A&A,460,339 Karachentsev I. D., Karachentseva V. E., Huchtmeier W. K. & MakarovD.I.,2004,AJ,127,2031 Lee M. G.,Aparicio A.,Tikonov N., Byun Y.-I.,KimE.,1999, AJ,118,853 LeeJ.C.,KennicuttR.C.,FunesJ.G.,J.S.,SakaiS.,Akiyama S.,2007,arXiv,711,arXiv:0711.1390 Lo,K.Y.,Sargent,W.L.W.&Young,K.,1993,AJ,106,507 MakarovaL.,1999,A&AS,139,491 Masset,F.S.&Bureau,M.,2003,ApJ,596,152 McGaugh,S.S.,2005,ApJ,632,859 McGaugh,S.S.,Schombert,J.M.,Bothun,G.D.&deBlok,W. J.G.,2000,ApJ,533,99 Ott,J.,Walter,F.,Brinks,E.,VanDyk,S.D.,Dirsch,B.&Klein, U.,2001,AJ,122,3070 PfennigerD.&CombesF.,1994,A&A,285,94. PfennigerD.&RevazY.,2004,ASSL,319,307.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.