Baryon Spectroscopy and the Origin of Mass Eberhard Klempt Helmholtz-InstitutfürStrahlen–undKernphysik,UniversitätBonn Nußallee14-16,D-53115Bonn,GERMANY e-mail: [email protected] 0 1 0 Abstract. Theprotonmassarisesfromspontaneous breaking ofchiralsymmetryandtheformationofconstituent quarks. 2 Theirdynamicscannotbetestedbyprotontomographybutonlybystudyingexcitedbaryons.However,thenumberofexcited baryons is much smaller than expected within quark models; even worse, the existence of many known states has been n challenged in a recent analysis which includes - compared to older analyses - high-precision data from meson factories. a Hencep Nelasticscatteringdatadonotprovideawell-foundedstartingpointofanyphenomenologicalanalysisofthebaryon J excitation spectrum. Photoproduction experiments now start to fill in this hole. Often, they confirm the old findings and 9 evensuggestafewnewstates.Theseresultsencourageattemptstocomparethepatternofobservedbaryonresonanceswith 1 predictions from quark models, from models generating baryons dynamically from meson-nucleon scattering amplitudes, frommodelsbasedongravitationaltheories,andwiththeconjecturethatchiralsymmetrymayberestoredathighexcitation ] energies.BestagreementisfoundwithasimplemassformuladerivedwithinAdS/QCD.Consequencesforourunderstanding h ofQCDarediscussedaswellasexperimentswhichmayhelptodecideonthevalidityofmodels. p - Keywords: Baryonresonances,exp.status,quarkmodel,AdS/QFT,dynamicallygeneratedresonances,chiralsymmetryrestoration p PACS: 12.39.-x;13.60.-r;13.75.-n;14.20.-c e h [ INTRODUCTION 1 v Baryonspectroscopyisatabifurcationpoint.TheParticleDataGroup[1]lists44NandD resonanceswhichstem 0 mostly from the old analyses of the Karlsruhe-Helsinki (KH) [2] and Carnegie-Mellon (CM) [3]collaborations. 9 ThemostrecentanalysisoftheSAIDgroupatGeorgeWashingtonUniversity(GWU)[4]includeshighprecision 2 3 datafrommesonfactoriesanddatawithmeasurementsoftheprotonrecoilpolarization.Soweshouldexpectthe . numberofknownstatestoincrease.Instead,SAIDfinds20only.Thisisamuchsmallernumberthanthe72known 1 mesonicstates,nottospeakaboutthewealthofadditionalstatesrevealedfromtheQMC-St-Petersburganalysisof 0 Crystal-BarrelLEARdata.Ofcourse,amuchgreaternumberofstatesisexpectedfor(three-body)baryonsthan 0 1 for(two-body)mesons.Here,wewilladdressthequestionwetherwehavetoabandonalargefractionofbaryon : resonanceslistedbythePDGorifweshouldincludethemwheninterpretingthedatainmodels. v Themostnaturalandmostpopularframetodiscussbaryonresonancesisthequarkmodel.Butotherconcepts i X havebeenproposed.Here,datawillbecomparedtoquark-modelpredictions,totheSkyrmemodel,toAdS/QCD. r Attheend,Iwilladdressafewkeyissuesintheoryandwillproposekeyexperiments,whichmayhelptodecide a onthevalidityofthedifferentconcepts. WHYBARYONSPECTROSCOPY? We all have an intuitive knowledge of what “mass" means. But, as often in physics, Nature offers surprises. AstronomersbelievethatonlyasmallfractionofthetotalmassoftheUniverseismatterintheformasweknow it. Close galaxiesseem to driftapart faster than more remote galaxies(Fig. 1, left); the accelerationis assigned to a mythic dark energy (accounting for 73% of the mass of the Universe). The rotational frequencies of stars in galaxies do not depend on the distance from the galaxy center (Fig. 1, center); dark matter, e.g. in the form ofsuper-symmetricparticles,isintroducedwhichgivesa23%masscontribution.“Normal"mattermakesupthe remaining4%.Themyriadsofstarsinthenightlyheavenconstitutejust1%ofthetotalmass(Fig.1,right). Thematterasweknowitprovidessurprisesforusaswell. We areaccustomedtothefactthatelectronscarry onlyan atomicmassfractionof1/4000;theirbindingenergyisin thesub-ppmrange.Innucleons,itis thefield energywhichoutcaststhequarkmassbya factorhundred.99%of thebaryonmassdoesnotcomeof thequark FIGURE1. Left:TheHubbleconstantislargerforclose-bygalaxies.Center:Thevelocitiesofstarswithingalaxiesdoes notdependontheirdistancetothecenter.Right:Massdistribution. massesbutfromchiralsymmetrybreaking.Thesmallcurrentquarkmassduetothequark-Higgsinteractionisnot veryimportantonthehadronicscale. The fundamentaltheoryof stronginteractions,QCD, is chirallyin- variant,itkeepshandiness,forthenearlymasslessquarks.Thissym- metryisdynamicallybroken,givingtoquarksaneffectivemass.This effect can be studied in lattice gauge calculations [5] which show an increase in mass with decreasing momentum transfer (see Fig. 2). At small q, the effective mass is about 320MeV. This is called theconstituentquarkmass.Itcanbeunderstoodusingdifferentlan- guages.Thebagmodelassignstheconstituentquarkmasstoabsence of quark condensates inside of the bag [6]; the Dyson Schwinger equation approximatesthe effective gluon operator [7]; quarks hop betweenspecialfieldconfigurationscalledinstantonsbyflippingthe Figure2.Thequarkmassasafunction quarkspinandthus,theseacquiremass[8].Howcanwelearnabout ofthemomentumtransfer[5] constituentquarks?Certainlynotbydeepinelasticscattering.Proton tomographyrevealsthe distributionof linear andorbitalangularmomentabut informationon collectivedegrees offreedomislost.Thewavelengthwithwhichtheprotonisexploredneedstomatchthesizeoftheconstituents. Thisistherealmofspectroscopy. EXPERIMENTAL STATUS Table1.NandD resonances.Compilation:see[9].a:BnGa;b:GWU. The Particle Data Group [1] lists 44 nu- Resonance Mass Resonance Mass Resonance Mass cleonandD resonances,Table1presents N(940) 940 D (1232) 1232±1 N1/2+(1440) 1450±32 a recent compilation [9]. Evidence for N1/2−(1535) 1538±10 N3/2−(1520) 1522±4 N1/2−(1650) 1660±18 theexistenceofbaryonresonancesisde- N3/2−(1700) 1725±50 N5/2−(1675) 1675±5 D 1/2−(1620) 1626±23 rived mostly from elastic p N scattering. D 3/2−(1700) 1720±50 D 3/2+(1600) 1615±80 N3/2+(1720) 1730±30 Dependingontheconfidencewithwhich N5/2+(1680) 1683±3 N1/2+(1710) 1713±12 D 1/2+(1750) their existence and their properties are N1/2−(1905) 1905±50 N3/2−(1860) 1850±40 N1/2+(1880)a known, these resonances are decorated N3/2+(1900)a N5/2+(1910) 1880±40 N7/2+(1990) 2020±60 with one, two, three or four stars. Ex- D 1/2−(1900) 1910±50 D 3/2−(1940) 1995±60 D 5/2−(1930) 1930±30 ceptforthefour-starresonances,the ev- D 1/2+(1910) 1935±90 D 3/2+(1920) 1950±70 D 5/2+(1905) 1885±25 idence is challenged by a careful GWU D 7/2+(1950) 1930±16 N1/2+(2100) 2090±100 N1/2−(2090) analysis [4] and only those boldfaced in N3/2−(2080) 2100±55 N5/2−(2060)a 2065±25 N7/2−(2190) 2150±30 Table1 survive.Spinandparityofreso- N5/2−(2200) 2160±85 N9/2−(2250) 2255±55 D 1/2−(2150) nancesaregivenintheformN1/2−(1535) D 5/2−(2223)b D 7/2−(2200) 2230±50 N9/2+(2220) 2360±125 which gives spin and parity directly in- D 7/2+(2390) 2390±100 D 9/2+(2300) 2360±125 D 11/2+(2420) 2462±120 steadofN(1535)S11 usedbytheParticle D 9/2−(2400) 2400±190 D 3/2−(2350) 2310±85 N11/2−(2600) 2630±120 DataGroup. N13/2+(2800) 2800±160 D 13/2−(2750) 2720±100 D 15/2+(2950) 2920±100 For an interpretation of the resonance spectrum it is decisive to know if we need to abandon the 24 states not seen by SAID. At present, we cannot decide if the KH and CM analyses pick up some noise or if resonances arelostintheGWU analysisbytheappliedsmoothingprocedure.Butforafewresonances,seenintheKHand CM analyses and not seen in the GWU analysis of elastic p N scattering data, this question can be studied. We give three examples where resonances found by KH and CM and disclaimed by GWU are required in inelastic reactions.Notethattherelevantp N→p Namplitudes[4]areincludedinthefit.KH,CM,andGWUfitonlythese amplitudes; the inelasticity is unconstrained by data. In the BnGa analysis, most inelastic channels are known fromphotoproductionandonlyfewinelasticchannels(mainlywithvectormesons)aretreatedas“blackbox". TFihge.3D 3s/h2o+w(1s6t0h0e)imfraogminpar+ypp→artSo+fKth+e:elasticP33p N scatteringamplitude 0.25 Im T(P33 ) 0.12 above D (1232). Points (in red) with error bars represent the GWU am- plitude, the thin (red) line a BnGa fit. The D (1232) tail is followed by a 0.2 0.08 continuum;thereisnoevidenceforfurtherstructures.TheKHamplitude is represented by black triangles; the dominantD (1232) tail is removed. 0.15 0.04 The amplitude exhibits a peak in the imaginary part, evidencinga D 3/2+ 0 resonanceat1600MeVcouplingtop N.TheCMpartialwaveagreeswith 0.1 -0.04 KH in exhibitinga peakstructure.The questionis which analysisis cor- recttheoldanalysesbyCMandKHfindingD 3/2+(1600)orGWUwhere 0.05 -0.08 theresonancedoesnotexist.Theamplitudesderivedfromelasticp Nscat- W(GeV) tering are ambiguous. The BnGa fit includes data on the inelastic reac- 0 -0.12 1.4 1.5 1.6 1.7 1.8 1.9 2 tionp +p→S +K+.Duetothecharge,intermediateresonancesmusthave Figure3.TheP amplitude. 33 isospinI=3/2.Thedatawereincludedinageneralfittoalargenumber ofdifferentinelasticreactionsandtotheGWUelasticamplitudes.TheresultingP amplitudeisshownasthick 33 (blue) curve. The amplitude follows closely the KH amplitude. The analysis requiresto introduceD (1600). 3/2+ The need for the resonancecan be seen fromthe differentialdistribution and the inducedS + polarization.Thus webelievethattheD (1600)isdefinitelyconfirmedwithapolepositionatM=1540+40,G =230±40MeV. 3/2+ −80 TheN (1900)fromphotoproductionofhyperons: 3/2+ 0 12 Very sensitive data on photoproduction of hyperons are now available on 2/10 10 KL +KS g p→L K+,g p→S 0K+,andg p→S +K0.Fig.4showsthe c 2 oftheBnGa D c fit as a function of the assumed N3/2+(1900) mass. The data base includes 8 high-statistics angular distributions, several single (S ,T and P) and double 6 polarizationobservables(Cx,Cz,Ox,Oz).Alargedatabaseonotherreactions isincludedinthefits.Butstill,thereisnotyetafullreconstructionofpartial 4 waveamplitude.Sotheevidenceisderivedfromac 2 minimization(seeFig. 2 KL 4).Thebestvaluesanderrors,M= 1915±50MeVandG =100±50MeV, coverallsolutionswithreasonablec 2. 0 D (1920)andD (1940)fromg p→pp 0h : -2 3/2+ 3/2− 1800 1850 1900 1950 2000 2050 Fits to this reaction with/without D 3/2+(1920) (left) or D 3/2−(1940) (right) M(P ), MeV 13 representedbysolidlinesinFig.5arenotnotsatisfying,boththeseresonances Figure4.c 2 asafunctionofthe are neededto achievea goodfit. The fits optimizesfor(M;G )=(1910±50; imposedN3/2+(1900)mass. 330±50)(D 3/2+(1920))and(1985±30;390±50)MeV(D 3/2−(1940)). 1.7< W < 1.9 1.9< W < 2.1 2.1< W < 2.3 1.7< W < 1.9 1.9< W < 2.1 2.1< W < 2.3 400 600 800 800 400 800 300 600 600 300 600 400 200 400 400 200 400 200 200 a) 200 b) 100 c) 100 d) 200 e) f) 0 0 0 0 0 0 -1 0 1 -1 0 1 1.5 2 -1 0 1 -1 0 1 -1 0 1 cos q cos q M(h p), GeV/c2 cos q cos q cos q p h h p h h p Figure 5:Selectedmass and angulardistributions. A fit represented by solid lines without D 3/2+(1920)(left) or D 3/2−(1940)(right)yieldsabadfit.Onlywhenbothresonancesareincluded(dashedlines),dataarereproduced. We conclude that 1. it would be too early to abandon the resonances found in the KH and CM analyses but missed in the GWU analysis, and that 2. photoproduction begins to make a significant impact on baryon spectroscopy. For the interpretation of the baryon spectrum, all resonances of Table 1 will be used. For further informationontheBnGaanalysis,seetalksbyAnisovichandSarantsevatthisconference. INTERPRETATION Quarkmodels: The quarkmodelprovidesthe most naturaland mostaccepted picture of the baryonexcitationspectrum. Ingre- dientsareconstituentquarkswithdefinedrestmasses,aconfinementpotential(mostlylinear)andsomeresidual interaction.In the celebratedIsgur-Karlmodelandits later “relativized"refinements,an effectiveone-gluonex- change is chosen as residual interaction. The Bonn group starts from a Bethe-Salpeter equation;the linear con- finement potential has a full Dirac structure. Instanton-inducedinteractions are responsible for the N−D mass splitting.Thequarkmodelsareverysuccessfulinexplainingthepropertiesofbaryongroundstatesandlow-mass excitations;theyfailtoreproducethemassesofradialexcitationsandpredictmanymorebaryonresonancesthan foundinexperiment. AdS/QCD: The Maldacena correspondence relates conformal strongly-coupled theories in space-time to a weakly-coupled (“gravitational")theoryinafivedimensionalAnti-deSitterspaceembeddedinsixdimensions.Gravitationalthe- ories can be solved analytically, the solutions can be mapped into space-time and compared to data. There is a (heuristic)mappingofquantummechanicaloperatorstooperatorsinAds/QCD.ThefifthdimensioninAdScalled zcanbeinterpretedasvirtualityordistancebetweenconstituents.Forz→0,constituentsareasymptoticallyfree. Confinementcanbeenforcedbyahardboundaryz<z =1/L (hardwall)orbyasoftwallduetoadilation max QCD field(orpenaltyfunction)increasingasz2. AdS/QCD relates masses to the orbital angular momentum L (Fig. 6). In quark models, relativity plays an importantrole,andonlythetotalangularmomentumJisdefined.Experimentally,thereareafewstrikingexamples wheretheleadingorbitalangularmomentumandthespincanbeidentified.Togiveoneexample:thefourstates D 1/2+(1910),D 3/2+(1920),D 5/2+(1905),andD 7/2+(1950)areisolatedinmass.Theyobviouslyformaspin-quartet ofresonanceswithL=2,S=3/2.Smalladmixturesofothercomponentsarenotexcluded. 9/2+ Figure6:One-parameterfittotheD exci- 11/2+ taopMafatt2iiebroar=anomr=fyasqoip1·sune(.0acsnLt4rewrk+euGsidmtNewehV.di+“t2Fhwgoa3hosrn/piod2cnidhn)ub−cdar=leineqbdodu1u·na.ica4srreo6DkessssGph"tohGi,enneVwaez2Vnmie.tcrh2aeoiss.as, 2468 M2 D(3G/2+e(V1223)2) DDDD 3131////2222++--((((N11117667=020500000)))) DDDDDDD 5317531///////2222222---++++(((((((1111111999999934050210000500))))))) DDD 575///222+--731(((///222222+++222020030))) DDDDD195971/////22222--++735+((((///(22222222--+433340509200000))))) 11975911////2222//22+++-+- D 15/21+3(/22ND+91=530/121)97-1//(22/22---750) D resonanceshavenogooddiquarks. L+N 0 0 1 2 3 4 5 6 Dynamicallygeneratedresonances: The properties of some resonances (and the meson-baryon system at low energies) can be understood very successfullyusinganeffectivechiralLagrangian,relyingonanexpansioninincreasingpowersofmesonmasses andmomenta.Aproblemariseswhenthesedynamicallygeneratedresonancesarepredictedatopthequark-model states,orwhenthelightquarkbaryonsaredisregardedaltogetherandreplacedbyasystematicsofmeson–baryon excitations. The pole structure of N1/2−(1535) and N1/2−(1650), e.g., was studied by Döring et al. [10]. They generated N (1535) dynamically and introduced two additional poles, one for N (1650) and a third one. 1/2− 1/2− The latter pole movesfar into the complexplane and providesan almost energyindependentbackgroundwhile thedynamicallygeneratedN1/2−(1535)poleappearsasastableobject.ThiscouldmeanthatN1/2−(1535)isfully understoodby the interactionof the baryonandmeson, into whichit disintegrates.It can be interpretedthatthe observedN (1535)isdynamicallygeneratedandthestatepredictedbythequarkmodelismissing.Thelatter 1/2− interpretationseemsunacceptabletome. Restorationofchiralsymmetry? Incontrarytoexpectationsbasedonthequarkmodelinharmonicoscillatorapproximation,themassesofbaryon resonances do not increase with alternating states of even and odd parity; often, states having the same J but oppositeparitiesareapproximatelydegenerateinmass(seeTable2).Atlowmass,N (1535)ismuchheavier 1/2− than its chiral partner, the proton. In meson spectroscopy, the r mass is much below the a (1260) mass. The 1 massdifferenceisassignedtoaspontaneousbreakingofchiralsymmetry.Glozman[11]andothersarguethatat high-mass excitations, details of the potential responsible for spontaneous chiral breaking are irrelevant: chiral symmetrycouldberestoredinhighlyexcitedbaryons.Thealternativeinterpretationoftheoccurrencespin-parity partners, AdS/QCD, is criticized because of Table2.Chiralmultiplets(doubletsorquartets)ofN∗ andD ∗ the use of orbital angular momentum, a non- resonancesofhighmass.Listandstarrating,see[9]. relativistic quantity [12], a view contested in [13]. Parity doublets are only observed for J=12 N1/2+**(1*710) N1/2*−*(*1*650) D 1/2+(1750) D 1/2*−*(*1*620) resonances on Regge daughter trajectories; J=32 N3/2*+*(*1*720) N3/2−**(1*700) D 3/2+**(1*600) D 3/2*−*(*1*700) mReegsgoenstraajnedctobrayryhoanvsefnaollipnagritoynptahretnelre.aTdihnigs J=52 N5/2*+*(*1*680) N5/2*−*(*1*675) nochiralpartners isachallengeforfutureexperiments. J=12 N1/2+*(*1880) N1/2−*(1905) D 1/2*+*(*1*910) D 1/2−*(*1900) Modelsversusdata: J=32 N3/2+*(1900) N3/2−*(*1860) D 3/2+**(1*920) D 3/2−*(*1940) Modelpredictionscanbeconfrontedwithdata. J=52 N5/2+*(*1870) noch.partner D 5/2*+*(*1*905) D 5/2−*(*1930) Thepredictionsofchiralsymmetryrestoration J=72 N7/2+*(*1990) noch.partner D 7/2*+*(*1*950) noch.partner gbiavreyoannsionftteernpraeptapteiaornaosfpoanrietyodboseurbvlaettiso.nT,htheraet J=72 noch.partner N7/2*−*(*2*190) noch.partner D 7/2−*(2200) is no prediction where the masses should be J=92 N9/2*+*(*2*220) N9/2*−*(*2*250) D 9/2+*(*2300) D 9/2−*(*2400) found.Forthisreason,wedonotincludethis modelinthequantitativecomparison.Also,modelsgeneratingresonancesdynamicallyarenotsuitableforanu- merical comparison with data, since only a part of the spectrum is calculated. Well suited are quark models, AdS/QCD,andtheSkyrmemodel(eventhoughthismodelwasleftoutintheabovediscussionofmodels).Weuse twoquarkmodelsforthecomparison,therelativizedquarkmodelofCapstickandIsgur[14]andtherelativistic Bonnmodel[15].TheSkyrmemodel[16]hastwoparametersonlybutpredictslessthanhalfthenumberofthe observedstates, andthemasspredictionsare ratherinaccurate.Thebestagreementis achievedwiththe gravita- tionalmodel[17],seeTable3.Abreakdownofcontributionsofindividualresonancescanbefoundin[18]. TheagreementbetweenAdS/QCD andthe dataisabsolutelyamazing.Obviously,thetwo parametersusedto describethedatacorrespondtoimportantphysicalquantities.TheparameterainfrontofL+N isrelatedtothe maximumdistancebetweenconstituents,itisrelatedtothesizeofthebaryon.Thesecondparameterbisusedto constructanoperatorinAdSwhichreducesthesizeproportionaltothediquarkfractionwithvanishingspinand isospininthebaryon:inthisversionofAdS/QCD,“gooddiquark"aresmallerinsizecomparedtootherdiquarks. The second observation is that the mass depends on the orbital angular momentum L implying that we have a non-relativistic situation. We are used to describe the nucleon as bound state of three constituent quarkseach having1/3 of the nucleonmass. The constituent-quarkis generatedby chiralsymmetrybreaking,by the energy ofthe QCD fields. Thequarkmodelassumesthatthe constituentquarkisan objectwhichcan beacceleratedto relativisticenergies;chiralsymmetryandchiralsymmetrybreakingisnoteffected.Thisdoesnotneedto bethe case. Glozman assumes that chiral symmetry is restored. This is the assumption of a central Mexican-hat-like potentialwherechiralsymmetryisdynamicallybrokenattheoriginofthehadron.Theuseofameanfieldwhich leadstoaMexican-hatpotentialintherestframeofthenucleonisatleastadebateableassumption.Thesuccess ofAdS/QCDsuggeststhatconstituentquarksexpandandbecomemoremassivewhenabaryonisexcitedtohigh energy.Chiralsymmetryisbrokeninanextendedvolume,andthismightbethereasonfortheincreaseinmass. Table3.ComparisonofmodelcalculationswiththemassspectrumofnucleonandD resonancesfromTable1. Model Reference Nr.ofparameters “quality" Quarkmodelwitheff.one-gluonexchange [14] 7 (d M/M)=5.6% Quarkmodelwithinstantoninducedforces [15] 5 (d M/M)=5.1% Skyrmemodel: [16] 2 (d M/M)=9.1% AdS/QCDmodelwith“gooddiquarks": [17] 2 (d M/M)=2.5% ThenucleonislighterthanD (1232),notbecauseofeffective-onegluonexchangeleadingtoamagnetichyperfine splittingbutbecauseofthesmallersizeofthegooddiquarkitcontains(which50%probability).TheL (1405)has suchalowmasssinceithasnotonlyonegooddiquarkbutallthreepairshavevanishingspinandisospin. Multiplicityofresonancesandtheexistenceglueballsandhybrids: Thereisthewell-knownproblemofthemissingresonances:thenumberofbaryonresonancespredictedinquark models exceeds by far the number of observed states. The number of baryon resonances can be counted using harmonic oscillator wave function, with two oscillators r and l . Quark models predict, for given~L and N, a multitudeofstatessatisfying~lρ+~lλ=~Landnρ+nλ=N.WithincreasingLandN,thenumberofpredictedstates explodes:expectedare, e.g. two N states in the second shell, seven N states in the third shell, ten N 1/2+ 1/2− 1/2+ statesintheforthshell.ThisproblemispartlycuredinAdS/QCDwhereatmosttwoJ=1/2statesareexpected inanyshell. There could be a second problem of too large a number of predicted states. In the quark model, there is e.g. one nucleonresonancewith L=1, S=1/2,one state with L=1, S=3/2. Thepossibility of mixingadmitted, we can still identify the N1/2−(1535) with the predicted L= 1, S = 1/2 quark model state, and N1/2−(1650) with L=1, S=3/2. But there is evidence that N (1535) can be generated dynamically from Nh -L K-S K 1/2− coupled-channelscatteringdynamics.Hencetherecouldbe a quarkmodelstate N (1535)anda dynamically 1/2− generatedN1′/2−(1535).Zou[18]proposesthattheobservedN1/2−(1535)hasalarge(qqq)(qq¯)componentwithall quarksinS-wave.IfN (1535)=a |qqq>+b |(qqq)(qq¯)>,isthereanorthogonalresonanceN′′ =b |qqq> 1/2− 1/2− −a ∗|(qqq)(qq¯)>and,ifso,atwhichmass?DohybridconfigurationsN′′′ =a ′|qqq>+b ′|(qqq)(G)>addto 1/2− thelistofexpectedresonances?Experimentally,noneoftheseadditionalstateshasbeenobserved. Itseemstobeworthwhiletostressthatthenumberofbosonsisnotawell-definedquantity.Iproposeaviewin whichtheinteractionsbetweenthree(current)quarksprovidetheprimaryforcestostabilizeabaryon.Thethree quarks acquire their constituent dynamical mass. Gluons may polarize the vacuum, correlated quark-antiquark pairs are created. Depending on the dynamics, these qq¯ pairs may have long-range correlations and may move freely within a hadron as Cooper-pairsor massless Goldstone bosonsleading to a fast flavor exchange.Or they mayevolveintomassivequarks.Iftheirmassesapproachthemassof“normal"constituentquarks,weratherspeak abouta nucleon-mesonmoleculeor - invokingcolor chemistry - aboutfive-quarkstates. However,the originof allbaryonsisthethree-quarkcomponent.TheactualdecompositionisaquestionhowtheQCDvacuumresponds to the primarycolorsourceof threequarksata givenmassandwith givenquantumnumbers.Theresponsecan be verydifferent,in particular it will dependcritically on the presence of close-by thresholds,but it is a unique response.Thereisno“hiddenvariable"whichdecidesthatthreequarkswithL=1,S=1/2willgoeitherintoa N,N′,N′′,orintoaN′′′configuration,orintodifferentmixturesoftheseFockcomponents.Thereisonlyonestate. This view has attractive features; it reduces the number of expected but unobservedstates. It emphasizes the viewthatquark-modelresonances,dynamicallygeneratedresonances,five-quarkstatesaredifferentapproachesto understandthesameobjectwithitscomplicatedinternalstructure.Thedifferentapproachesarealllegitimate,none ofthemcarriesthetruth,andeachapproachshouldbetestedifthepredictionsarenotinconflictwithfirmresults ofotherapproaches.Iftheviewisextendedtothemesonicsector,therearesomeunfamiliarconclusions.First,the raisond’etreofallscalarmesonsistheirqq¯component,evenofthes .Butthisisalsoatrivialstatement:without QCD,therearenonuclearforces.Second,ifthereisonlyonescalarisoscalarstate(plusradialexcitations),withall configurationsqq¯,qqq¯q¯,qq¯G,pp ,KK¯,etc.included,thenonefurtherpossibility,theGGglueball,islikelyalsoa Fockcomponentinitswavefunction.Inthisview,alsotheGGcomponentdoesnotleadtoanextrastate,thereisno supernumerocityofresonancesexpected.Iamawareofclaimsthatsupernumerocityhasbeenproven;theParticle DataGroupisstronglybiassedintothisdirection.Imaintainthattheseclaimsareexperimentallynotsound,see [20], for a review. Presumably,most scalar isoscalar mesons are realized as flavor singlets or octets. The SU(3) flavorsingletsareverywideandformthecontinuousscalarbackground,a“narrow" f (1370)doesnotexist.Only 0 theoctetmesonshavenormalhadronicwidths;theseare f (1500), f (1760)(whichincludes f (1710), f (1790), 0 0 0 0 f (1810)),and f (2100).Theflavordecompositionofthelow-mass f (980)and f (500)arestronglyinfluenced 0 0 0 0 by the pp and KK¯ threshold.Scalar mesonshave a significantfour-quarkcomponentbuttheir qq¯ componentis mandatory:in SU(3),there are nine qq¯ states and also nine qqq¯q¯ states respectingthe Pauli principle.In SU(4), thereare16qq¯andtherecouldexist36qqq¯q¯states,butnoneofthese20additionalstateshasbeenobserved. Interestingly,theviewforbidsnon-exotichybrids,sincetheyareabsorbedintothewavefunctionofqq¯mesons carryingthesamequantumnumbers.Neithertheexistenceofexotichybridsisexcludedbytheargumentsgiven above,northeexistenceofpentaquarksinanon-(qqq)configuration. WHATISNEEDED? Itain’tnecessarilybeso: Theinterpretationdepends,ofcourse,heavilyontheexistingdata.Henceitisofgreatestimportancetoconfirm orrefuteasmanyofthestatesseen inKH andCM andnotseeninGWU analysesaspossible.Photoproduction experimentsstarttohaveasignificantimpact.Experimentswithpolarizedphotonbeamsandpolarizedtargetshave alreadytakena significantamountofdata;resultsareeagerlywaited for.Hyperonphotoproductionexperiments benefitfromtheself-analysingpowerofhyperondecays.Somedoublepolarizationvariableshitthevalue1.This may indicate that a smaller number of observables (and not 8) is already sufficient to constrain the amplitudes fully. At least, the BnGa PWA group noticed that there are much less ambiguities in defining the partial wave amplitudesforhyperonphotoproductionwhentheamplitudesareconstrainedbyds /dW ,S ,P,C ,C ,O ,andO . x z x z HenceIbelieveweareatapointwherewesoonwillbeabletodecidewhichresonancesexistinthemassrange below2GeVor,perhaps,2.2GeV. Searchformissingquarkmodelstates: InthesecondoscillatorshellwithL=2,quarkmodelspredictstatesinwhichthespatialwavefunctionarefully antisymmetric,in which the orbitalangularmomenta~lρ and~lλ are bothone andcoupleto L=1. If these states exist, they likely do not decay into Np but prefer a cascade where the two oscillators de-excite successively. According to the AdS/QCD mass formula (and its interpretation) one can assume that the mass of this spin doublet N and N should be between 1.7 and 1.8GeV. The preferred decay mode could be the cascade 1/2+ 3/2+ N →N (1535)p →Nhp orN →N (1520)p →Npp wherealldecaysproceedviaS-wave. 1/2+ 1/2− 3/2+ 3/2− WhatisthemassofthefirstD resonance? 7/2− We havealreadymentionedthequartetofstates D 1/2+(1910),D 3/2+(1920),D 5/2+(1905),andD 7/2+(1950).The firstthreestateshavespin-paritypartnersD 1/2−(1900),D 3/2−(1940),D 5/2−(1930).Inquarkmodels,themassesof positiveparitystatesarewellreproduced,thoseofthenegative-paritystatesareunexpectedlylow.InAdS/QCD, thepositive-paritystateshaveL=2,N=0,thenegative-paritystatesL=1,N=1,respectively,andarepredicted to bedegeneratein mass. Since~L+~S yieldsonlyJ =1/2−, J=3/2−, andJ =5/2− negative-paritystates, but J =1/2+, ··· J =7/2+ forL=2,S=3/2,the absenceofa paritypartnerof D 7/2+(1950)isexpected.Instead, 2184MeVispredictedasD 7/2− mass,closetothePDGresonanceD 7/2−(2200). If chiral symmetry were restored in high-mass baryons, the D mass would need to be degenerate 7/2− in mass with D (1950). The mass is 2200MeV, hence we could conclude that AdS/QCD is favored. 7/2+ However,the D 7/2−(2200)mass determinationis notveryreliable.In Table 4 we list the Particle Data group entries for D 7/2−(2200). The Table4:PDGentriesforD 7/2−(2200). valuesaveryconsistentbuttheresonanceisgivenone-staronly.Inthe Mass[MeV] Width[MeV] Ref. GWU analysis[4],thestate isnotseen.Thisiscertainlynotthelevel 2200±80 450±100 [2] ofconfidenceweneedinordertosettlethequestionifchiralsymmetry 2215±60 400±100 [3] isrestoredorbrokeninhigh-masshadronresonances. 2280±80 400±150 [21] Spin-paritydoubletsarealsoobservedinthemesonspectrum,formany mesonsbutnotforthoseontheleadingReggetrajectory.Togivean example:thereisaa (2040)mesonwithJPC=4++butthelowestmasspartnerwithJPC=4−+isp (2250),and 4 4 thesameobservationcanbemadeforthelowest-massstatesintheseriesJPC=1−−,JPC=2++,JPC=3−−,···. Hence spin-parity partnersare missing for the most importantstates. The following argumentby Glozman [22] suggests a dynamical reason why the postulated JPC = 4−+ state at 2040MeV was not observed: mesons in the high-mass region stem mostly from the QMC-St-Petersburg analysis of Crystal-Barrel LEAR data on p¯p annihilationin flight.And the p¯p system couplesto JPC =4++ with L=4 while forformationof a JPC =4−+ state,L=5isrequired.Hencep (2250)couldbesuppressed.Itisworthwhiletonotethattheobservedpatternis 4 isexpectedinAdS/QCD.Mesons–exceptscalarandpseudoscalarmesons–arewelldescribedbytheformulain thecaptionofFig.6,ifthe”3/2"isreplacedby”1/2". In photoproduction or pion-induced reactions, there is no such angular momentum suppression; hence the search for the lowest-mass D resonance seems to be the most rewarding case to decide if quark models or 7/2− AdS/QCDdescribebestthemassspectrum,orifchiralsymmetryisrestoredathighexcitationenergies. Limitsofdynamicalgeneratedresonances: Therangeofapplicabilityofthemethodtogenerateresonancesdynamicallyhastobeunderstood.Asexperimen- talist, I am readyto believethat N (1535)can be generateddynamicallyfromits decayproducts,also thatit 1/2− couldhave,atlargedistances,asizablefive-quarkormolecularcomponentinitsFock-spaceexpansion.Butitis difficulttoacceptthatN1/2−(1535)andN3/2−(1520)arefundamentallydifferentobjects.Osetinhiscontribution tothisconference[23]constructedscalarandtensormesonsfromvector-vectorinteractions.Theisoscalarscalar mesons are found at 1512MeV and 1726MeV. This looks like a success as well as the tensor meson found at 1275MeV.However,thenexttensorat1525coupleswithsimilarstrengthtoK∗K∗,ww ,fw ,ff , butnottorr . This is in striking conflict with whatwe knowabout f (1525):it is a ss¯state, the tensor mesons have a mixing 2 angle close to the ideal one. OZI rule violating couplings like the one into fw are highly suppressed. Also the isovectorstatesareafailure.Ifrr generates f (1270),rw mustgeneratea (1320);thepredictedlowestisoscalar 2 2 tensormassis1567MeVanditsscalarcompanionispredictedtohave1777MeV.Inmyview,itisimportantto findouttheconditionsforameaningfulunitarizationofchiralamplitudes,andnottoenjoytheachievementsand toneglectthefailures. Excitedstatesonthelattice: Lattice gauge calculation have entered the difficult task to explore the spectrum of baryon resonances and to address their finite width. In the Introduction, I showed how the mass of a quark evolves with decreasing momentumtransfer.Thecalculationwasdoneforaquarkpropagatorirrespectiveofitsenvironment.According tothediscussionabove,theconstituentquarkmassshoulddependonitsneighborhood;itshouldbelighterinthe nucleonthanintheD (1232),andmassiveinhighlyexcitedstates. CONCLUSIONS Baryonshaveplayedaveryimportantroleinthedevelopmentofparticlephysics,startingfromthe-atthattime- mysteriousprotonandneutronmagneticmoments,thediscoveryoftheD (1232)byFermiandhiscollaborators,to thediscoveryofSU(3)andtheinsightthatquarksneedanextradegreeoffreedomwhichisnowknownascolor. Theconceptofchiralsymmetryandchiralsymmetrybreakingisattherootofmodernstronginteractionphysics. With the new tools,in experimentandtheory,we havethe chancefora new understandingofstronginteraction dynamicsintheconfinementregion. IwouldliketothankB.Metsch,E.Oset,H.Petry,andJ.M.Richardforclarifyingdiscussions,andallmembersof SFB/TR16forcontinuousencouragement.FinancialsupportwithintheSFB/TR16iskindlyacknowledged. REFERENCES 1. C.Amsleretal.[ParticleDataGroup],Phys.Lett.B667,1(2008). 2. G.Höhler,F.Kaiser,R.KochandE.Pietarinen,“HandbookofPionNucleonScattering,”PhysicsData,No.12-1(1979). 3. R.E.Cutkoskyetal.,“p NPartialWaveAnalysis,”4thInt.Conf.onBaryonResonances,Toronto,Canada,1980. 4. R.A.Arndt,W.J.Briscoe,I.I.StrakovskyandR.L.Workman,Phys.Rev.C74,045205(2006). 5. P.O.Bowmanetal.,Phys.Rev.D71,054507(2005). 6. A.Chodos,R.L.Jaffe,K.JohnsonandC.B.Thorn,Phys.Rev.D10,2599(1974). 7. M.S.Bhagwat,M.A.Pichowsky,C.D.RobertsandP.C.Tandy,Phys.Rev.C68,015203(2003). 8. D.DiakonovandV.Y.Petrov,Sov.Phys.JETP62,204(1985)[Zh.Eksp.Teor.Fiz.89,361(1985)]. 9. E.KlemptandJ.M.Richard,arXiv:0901.2055[hep-ph]. 10. M.DöringandK.Nakayama,arXiv:0906.2949[nucl-th]. 11. L.Y.Glozman,Phys.Rept.444,1(2007). 12. L.Y.Glozman,arXiv:0903.3923[hep-ph]. 13. G.F.deTeramondandS.J.Brodsky,arXiv:0903.4922[hep-ph]. 14. S.CapstickandN.Isgur,Phys.Rev.D34,2809(1986). 15. U.Löring,B.C.MetschandH.R.Petry,Eur.Phys.J.A10,395(2001). 16. M.P.MattisandM.Karliner,Phys.Rev.D31,2833(1985). 17. H.ForkelandE.Klempt,Phys.Lett.B679,77(2009). 18. E.Klempt,Nucleonexcitations,QNP2009,arXiv:1001.2997v1[hep-ph]. 19. B.S.Zou,”EvidenceforanewΣ∗resonancewithJP=1/2−around1380MeV",contr.62. 20. E.KlemptandA.Zaitsev,Phys.Rept.454,1(2007). 21. A.W.Hendry,Phys.Rev.Lett.41,222(1978). 22. L.Y.Glozman,arXiv:0912.1129[hep-ph]. 23. E.Oset,”The f0(1370), f0(1710), f2(1270), f2′(1525)andK2∗(1430)inaunitaryapproach",contr.51.