Bar code for monomial ideals 7 1 MichelaCeria 0 DepartmentofMathematics 2 UniversityofTrento n ViaSommarive14,38123,Trento a J [email protected] 7 ] O Abstract C Aimofthispaperistocount0-dimensionalstableandstronglystableidealsin . 2and3variables,giventheir(constant)affineHilbertpolynomial. h Todoso,wedefinetheBarCode,abidimensionalstructurerepresentingany t a finitesetoftermsMandallowingtodesumemanypropertiesofthecorresponding m monomial ideal I, if M is an order ideal. Then, we use it to give a connection [ between(strongly)stablemonomialidealsandintegerpartitions,thusallowingto countthemviaknowndeterminantalformulas. 1 v 1 1 Introduction 8 7 1 StronglystableidealsplayaspecialroleinthestudyofHilbertscheme,introducedfirst 0 byGrothendieck[22], since their escalier allowsto study the Hilbertfunctionofany 1. homogeneousideal,exploitingthetheoryofGroebnerbases,aspointedoutbyBayer 0 [5]andEisenbud[18]. 7 The notion of generic initial ideal was introducedby Galligo [21] with the name 1 ofGrauertinvariant.Galligoprovedthatthegenericinitialidealofanyhomogeneous : v idealisclosedw.r.ttheactionoftheBorelgroupandgaveacombinatorialcharacter- i izationofsuch ideals, providedthattheyare definedona field of characteristiczero. X AlsoEisenbudandPeeva[18,42],focusedonthatmonomialideals,labellingthem0- r a Borel-fixedideals. Later,Aramova-Herzog[2,3]renamedthemstronglystableideals. Acombinatorialdescriptionoftheidealsclosedw.r.ttheactionoftheBorelgroup overapolynomialringonafieldofcharacteristicp>0hasbeenprovidedbyParduein hisThesis[41]andGalligo’sresulthasbeenextendedtothatsettingbyBayer-Stillman [6]. ThenotionofstableidealhasbeenintroducedbyEliahou-Kervaire[19]asagen- eralization of 0-Borel-fixed ideals. They were able to give a minimal resolution for stableideals. SuchminimalresolutionwasusedbyBigatti[10]andHulett[26]toextendMacaulay’s result[37];theyprovedthatthelex-segmentidealhasmaximalBettinumbers,among allidealssharingthesameHilbertfunction. 1 In connectionwith the studyofHilbertschemes[8, 9, 14, 33, 38, 45] ithasbeen considered relevant to list all the stable ideals [7] and strongly stable ideals [15, 34] withafixedHilbertpolynomial. Aimofthispaperistocountzerodimensionalstableandstronglystableidealsin2 and3variables,giventheir(constant)affineHilbertpolynomial. To doso, we first introducea bidimensionalstructure, calledBarCodewhichal- lows, a priori,to representany(finite1) setofterms M and, if M is anorderideal, to authomaticallydesume many propertiesof the correspondingmonomialideal I. For example,aPommaretbasis[48,12]ofI canbeeasilydesumed. TheBar Code isstrictly connectedto Felzeghy-Rath-Ronyay’sLexTrie[20, 35], evenifourgoalandmethodsarecompletelydifferentfromtheirs. Using the Bar Code, we providea connectionbetween stable and stronglystable monomialidealsandintegerpartitions. For the case of two variables, we see that there is a biunivocal correspondence between (strongly) stable ideals with affine Hilbert polynomial p and partitions of p withdistinctparts. Thecase ofthreevariablesis morecomplicatedandsomemoretechnologyisre- quired.ThankstotheBarCode,weprovideabijectionbetween(strongly)stableideals andsomespecialplanepartitionsoftheirconstantaffineHilbertpolynomialp. These plane partitions have been studied by Krattenthaler [31, 32], who proved determinantalformulastofindtheirnormgeneratingfunctionsand-finally-tocount them. Asanexample,weconsiderthestablemonomialideal I =(x3,x x ,x2,x2x ,x x ,x2)⊳k[x ,x ,x ], 1 1 1 2 2 1 3 2 3 3 1 2 3 whoseGroebnerescalierisN(I )= 1,x ,x2,x ,x ,x x . 1 { 1 1 2 3 1 3} ItcanberepresentedbytheBarCodebelow 1 x1 x21 x2 x3 x1x3 x31 x1x2 x21x3 x22 x2x3 x2 3 anditcorrespondstotheplanepartition 3 1 2 ThecorrespondencecanbeseenobservingtherowsoftheBarCodeabove: sincethe bottom row is composed by two segments, the plane partition has exactly two rows. The numberof entriesin the i-th row of the partition, i = 1,2(i.e. 2 and 1 resp.), is givenbythenumberofsegmentsinthemiddle-row,lyingoverthei-thsegmentofthe bottomrow. Finally,theentriesarerepresentedbythenumberofsegmentsinthetop row,lyingoverthesegmentsrepresentingthecorrespondingentry. 1Thereis alsothe possibility tohaveinfinite Bar Codes forinfinite sets ofterms, butitis outofthe purposeofthispaper,sowewillonlyseeanexampleforcompleteness’sake. 2 Exploiting this bijection and the determinantalformulasby Krattenthaler, we are finallyabletocountstableandstronglystableidealsinthreevariables. Even if the Bar Code can easily represent finite sets of terms in any number of variables, the generalization of our results to the case of 4 or more variables would require the introduction of n-dimensionalpartitions, for which, in my knowledge, it doesnotexista completestudyfromthe pointofview ofcountingthem2, so, in this paper,wedonotextensivelydealwiththem. 2 Some algebraic notation Throughoutthispaper,inconnectionwithmonomialideals,wemainlyfollowtheno- tationof[39]. Wedenoteby := k[x ,...,x ]thegradedringofpolynomialsinnvariableswithco- 1 n P efficientsinthefieldk,assuming,onceforall,thatchar(k)=0. Thesemigroupofterms,generatedbytheset x ,...,x is: 1 n { } := xγ := xγ1 xγn γ:=(γ ,...,γ ) Nn . T { 1 ··· n | 1 n ∈ } If τ = xγ1 xγn, thendeg(τ) = n γ is the degreeof τ and, for each h 1,...,n 1 ··· n i=1 i ∈ { } degh(τ):=γhistheh-degreeofτ.P Foreachd N, isthed-degreepartof ,i.e. := xγ deg(xγ) = d andit d d ∈ T T T { ∈ T| } iswellknownthat|Td| = n+dd−1 . Foreachsubset M ⊆ T weset Md = M∩Td. The symbol (d)denotesthed(cid:16)egree(cid:17) dpartof ,namely (d)= xγ deg(xγ) d . T ≤ T T { ∈T| ≤ } Analogously, (d)denotesthedegree d partof andgivenanidealI of , I(d)is P ≤ P P itsdegree dpart,i.e. I(d)= I (d). ≤ ∩P Wenoticethat (d)isthevectorspacegeneratedby (d)andweobservethatI(d)is P T avectorsubspaceof (d). P Asemigroupordering<on isatotalordering suchthatτ <τ ττ <ττ , τ,τ ,τ 1 2 1 2 1 2 T ⇒ ∀ ∈ . Foreach semigroupordering< on , we can representa polynomial f as a T T ∈ P linearcombinationoftermsarrangedw.r.t.<,withcoefficientsinthebasefieldk: s f = c(f,τ)τ= c(f,τ)τ : c(f,τ) k , τ , τ >...>τ , i i i ∗ i 1 s ∈ ∈T Xτ Xi=1 ∈T withT(f):=τ theleadingtermof f,Lc(f):=c(f,τ )theleadingcoefficientof f and 1 1 tail(f):= f c(f,T(f))T(f)thetailof f. − A term orderingisa semigroupordering suchthat1 islower thaneveryvariableor, equivalently,itisawellordering. Unlessotherwisespecified,weconsiderthelexicographicalorderinginducedby x <...< x ,i.e: 1 n xγ11···xγnn <Lex xδ11···xδnn ⇔∃j|γj <δj, γi =δi, ∀i> j, 2In[1],Chapter11,theauthorobserves: Surprisingly,thereismuchofinterestwhenthedimensionis1or2,andverylittlewhenthe dimensionexceeds2. 3 whichisatermordering. Sinceinallthepaperwewillconsiderthelexicographicalordering,noconfusion mayariseandsowedropthesubscriptanddenoteitby<insteadof< . Lex Foreachtermτ and x τ,theonlyυ suchthatτ = x υiscalled j-thprede- j j ∈ T | ∈ T cessorofτ. Given a term τ , we denote by min(τ) the smallest variable x, i 1,...,n , s.t. i ∈ T ∈ { } x τ. i | For M ,wedenoteby M thelistobtainedbyorderingtheelementsof M increas- ⊂ T inglyw.r.t. Lex.Forexample,ifM = x ,x2 k[x ,x ], x < x ,M = x2,x . { 2 1}⊂ 1 2 1 2 { 1 2} Asubset J isasemigroupidealifτ J στ J, σ ;asubsetN ⊆ T ∈ ⇒ ∈ ∀ ∈ T ⊆ T isanorderidealifτ N σ N στ. WehavethatN isanorderidealifand ∈ ⇒ ∈ ∀ | ⊆ T onlyif N= J isasemigroupideal. T \ Given a semigroup ideal J we define N(J) := J. The minimal set of ⊂ T T \ generatorsG(J)ofJ,calledthemonomialbasisofJ,satisfiestheconditionsbelow G(J) := τ J eachpredecessorof τ N(J) { ∈ | ∈ } = τ N(J) τ isanorderideal, τ<N(J) . { ∈T | ∪{ } } For all subsets G , TG := T(g), g G and T(G) is the semigroup ideal of ⊂ P { } { ∈ } leadingtermsdefinedasT(G):= τT(g), τ ,g G . { ∈T ∈ } Fixed a term order <, for any ideal I ⊳ the monomialbasis of the semigroup ideal P T(I)=T I iscalledmonomialbasisofIanddenotedagainbyG(I),whereastheideal { } In(I) := (T(I)) is called initial ideal and the order ideal N(I) := T(I) is called T \ GroebnerescalierofI. ThebordersetofI isdefinedas: B(I) := x τ, 1 h n, τ N(I) N(I) h { ≤ ≤ ∈ }\ = T(I) ( 1 x τ, 1 h n, τ N(I) ). h ∩ { }∪{ ≤ ≤ ∈ } IfI⊳ isanideal,wedefineitsassociatedvarietyas P n V(I)= P k , f(P)=0, f , { ∈ ∀ ∈I} wherekisthealgebraicclosureofk. Definition1. LetI⊳ beanideal.TheaffineHilbertfunctionofI isthefunction P HF :N N I → d dim( (d)/I(d)). 7→ P Fordsufficientlylarge,theaffineHilbertfunctionofI canbewrittenas: l d HF (d)= b , I i l i! Xi=0 − 4 wherel is the KrulldimensionofV(I), b are integerscalled Bettinumbersandb is i 0 positive. Definition 2. The polynomial which is equal to HF (d), for d sufficiently large, is I calledtheaffineHilbertpolynomialofIanddenotedH (d). I 3 On the Integer Partitions Inthissection,wegivesomedefinitionsandtheoremsfromthetheoryofintegerparti- tionsthatwewilluseasatoolforourstudy,mainlyfollowing[1,31,32,49]. Letusstartgivingthedefinitionofintegerpartition. Definition3([49]). Anintegerpartitionofp Nisak-tuple(λ ,...,λ ) Nksuchthat 1 k k λ = pandλ ... λ . ∈ ∈ i=1 i 1 ≥ ≥ k P We regardtwo partitionsasidenticaliftheyonlydifferinthenumberofterminal zeros.Forexample(3,2,1)=(3,2,1,0,0). Thenonzerotermsarecalledpartsofλandwesaythatλhaskpartsifk= i, λ >0 . i |{ }| Wewillmainlydealwiththespecialcaseλ > ... > λ > 0i.e. withintegerpartitions 1 k of pintoknon-zerodistinctparts,denotingbyI thesetcontainingthem,i.e. (p,k) k I := (λ ,...,λ ) Nk, λ >...>λ >0and λ = p . (p,k) 1 k 1 k j { ∈ } Xj=1 The number Q(p,i) of integer partitions of p into i distinct parts is well known in literature.Forexample,wecanfindin[16]theformulasallowingtocomputeit: i p,i N, i,1, Q(p,i)= P p ,i , Q(p,1)=1 ∀ ∈ − 2! ! whereP(n,k)denotesthenumberofintegerpartitionsofnwithlargestpartequaltok: n,k N, P(n,k)= P(n 1,k 1)+P(n k,k), ∀ ∈ − − − with P(n,k)=0 for k>n P(n,n)=1 P(n,0)=0 Wedefinenowthenotionofplanepartition. Definition 4 ([31]). A plane partition π of a positive integer p N, is a partition of ∈ pinwhichthepartshavebeenarrangedina2-dimensionalarray,weaklydecreasing acrossrowsanddowncolumns. Iftheinequalityisstrictacrossrows(resp. columns), wesaythatthepartitionisrow-strict(respcolumn-strict). Differentconfigurationsareregardedasdifferentplanepartitions. Thenormofπisthesumn(π):= π ofallitsparts. i,j i,j P 5 We pointoutthatanintegerpartition(see Definition3)is a simpleandparticular caseofplanepartition. Example5. Anexampleofplanepartitionof p=6is 2 1 1 1 1 whichisdifferentfromtheplanepartition 2 1 1 1 1 ♦ In sections6, 7, we will beinterestedin some particularplanepartitions, thatwe defineinwhatfollows. Definition6([31]). LetD denotethesetofallr-tuplesλ=(λ ,...,λ )ofintegerswith r 1 r λ ... λ . 1 r ≥ ≥ Forλ,µ D ,wewriteλ µifλ µ foralli= 1,2,...,r. Letc,darbitraryintegers r i i ∈ ≥ ≥ andλ,µ D ,withλ µ. Wecallanarrayρofintegersoftheform r ∈ ≥ ρ ρ ... ... ... ρ 1,µ1+1 1,µ1+2 1,λ1 ρ ... ... ... ... ... ρ 2,µ2+1 2,λ2 ... ... ... ... ρ ... ... ρ r,µr+1 r,λr a(c,d)-planepartitionofshapeλ/µif ρ ρ +cfor1 i r, µ < j<λ, i,j i,j+1 i i ≥ ≤ ≤ ρ ρ +dfor1 i r 1, µ < j λ . i,j i+1,j i i+1 ≥ ≤ ≤ − ≤ Inthecaseµ=0,weshortlysaythatρisofshapeλ. Wedenoteby (c,d)thesetof(c,d)-planepartitionsofshapeλ. λ P A (1,1)-plane partition containing only positive parts is a row and column-strict plane partition; these partitions will be useful while dealing with stable ideals (see section6). Definition7([32]). Letc,dbearbitraryintegersandλbeapartitionwithλ r. We r ≥ call“shifted(c,d)-planepartitionof shapeλ”anarrayπofintegersoftheform π π ... ... ... ... ... ... π 1,1 1,2 1,λ1 π ... ... ... ... ... π 2,2 2,λ2 ... ... ... ... ... π ... ... π r,r r,λr 6 andforwhich π π +cfor1 i r, i j<λ, i,j i,j+1 i ≥ ≤ ≤ ≤ π π +dfor1 i r 1, i< j λ . i,j i+1,j i+1 ≥ ≤ ≤ − ≤ Wepointoutthat,accordingtodefinition7,thereareλ i+1integersinthei-th i − row. We denote by (c,d) the set of shifted (c,d)-planepartitionsof shape λ. These λ S partitionswillbeusefulinsection7,wherewewillcountstronglystableideals. Example8. Theplanepartition 5 4 3 4 1 isa(1,1)-planepartitionwithshapeλ=(3,2)andnorm17. Ontheotherhand,theplanepartition 5 4 3 4 1 isa shifted(1,0)-planepartitionofshapeλ = (3,3)andnorm17. Itcontainsλ = 3 1 elementsinthefirstrowandλ 1=2elementsinthesecondrow. 2 − ♦ Weintroducenowthenotionofnormgeneratingfunction,forcountingplanepar- titions. Definition9([31]). ThenormgeneratingfunctionforaclassC of(c,d)-planeparti- tionsis xn(π). Xπ C ∈ Ifxisanindeterminate,weintroducethex-notations(see[31]): [n]=1 xn − [n]!=[1][2] [n], [0]!=1 ··· n [n]! = , ifn k,0. "k# [k]![n k]! ≥ − Ifk=0, n =1;ifk,0andn<k,thenweset n =0. k k h i h i Theorems10and12giveawaytocomputethenormgeneratingfunctionforplane partitionsoftheformsintroducedinDefinitions6and7,undersomehypothesesonthe sizeoftheirparts. LetusstartwiththeplanepartitionsofDefinition6. 7 Theorem10(Krattenthaler,[31]). Letc,dbearbitraryintegers,λ,µ D andleta,b r ∈ ber-tuplesofintegerssatisfying a c(µ µ )+(1 d) a i i i+1 i+1 − − − ≥ b +c(λ λ )+(1 d) b i i i+1 i+1 − − ≥ fori=1,2,...,r 1. Then,denotin−gN1(s,t)=bs(λs−s−µt+t)+(1−c−d) µt+2s−t − µ2t +c λs−s2−µt+t , thepolynomial h(cid:16) (cid:17) (cid:16) (cid:17)i (cid:16) (cid:17) (1 c)(λ µ) d(s t)+a b +c det1≤s,t≤r xN1(s,t)" − s−λst −s µ−t+t t− s #!, − − is the norm generating function for (c,d)-planepartitions of shape λ/µ in which the firstpartinrowiisatmosta andthelastpartinrowiisatleastb. i i Example11. Letusconsiderthe(1,1)-planepartitionsofshapeλ = (2,1)(soµ = 0), such thata = (4,3)and b = (1,1), i.e. row and columnstrict plane partitionsof the form ρ ρ 1,1 1,2 ρ2,1 0 ! with ρ 4, 1 ρ 3, ρ 1, With the notation introduced above, we have 1,1 2,1 1,2 ≤ ≤ ≤ ≥ r=2. Since 4=a c(µ µ )+(1 d) a =3 1 1 2 2 − − − ≥ 2=b +c(λ λ )+(1 d) b =1, 1 1 2 2 − − ≥ wecanapplytheformulaofTheorem10,which,substitutingourdata,turnsouttobe significantlysimplified: (s t)+a b +1 det1≤s,t≤2 xN1(s,t)"− −λs st+−t s #!, − whereN1(s,t)=bs(λs−s+t)+(−1) s2−t + λs−2s+t . Now, we have N(1,1) = (2 1 + 1)h(cid:16)+ (cid:17)2i =(cid:16) 2; N(cid:17)(1,2) = (2 1 + 2) + 3 = 5; − 2 − 2 (cid:16) (cid:17) x3 4 x(cid:16)6(cid:17)4 N(2,1)= 0;N(2,2)= (1 2+2) = 1,sowehavetocomputedet 2 3 = − 3h i xh3i det x3(1+x2)(1+x+x2) x5(1+x)(1+x2) = x10+2x9+3x8+3xh70i+3x6+h1xi5+x4 1 x(1+x+x2) ! Forexample,thereareexactly3partitionswithnorm8,namely 4 1 4 2 4 3 , , 3 0 ! 2 0 ! 1 0 ! ♦ We see now how to construct the norm generating function for the partitions of Definition7. 8 Theorem 12 (Krattenthaler, [32]). Let c,d be arbitrary integers, λ a partition with λ randleta,bber-tuplesofintegerssatisfying r ≥ a c d a i i+1 − − ≥ b +c(λ λ )+(1 d) b i i i+1 i+1 − − ≥ fori=1,2,...,r−1. Then,denotingN1 = ri=1(bi(λi−i)+ai+c λi2−i ),thepolynomial P (cid:16) (cid:17) (λ s)(1 c)+(1 c d)(s t)+a b xN1det1≤s,t≤r " s− − λ−s −s − t− s#!, − isthenormgeneratingfunctionforshifted(c,d)-planepartitionsofshapeλinwhich thefirstpartinrowiisequaltoa andthelastpartinrowiisatleastb. i i Example13. Letusconsidertheshifted(1,0)-planepartitionsofshapeλ = (3,3,3), suchthata=(6,3,1)andb=(1,1,1).Bydefinition,theyarematrices π π π 1,1 1,2 1,3 0 π2,2 π2,3 0 0 π3,3 withπ =6,π =3,π =1. Moreover,π ,π 1. 1,1 2,2 3,3 1,3 2,3 ≥ Wecomputethenormgeneratingfunctionforthesepartitions,viaTheorem12. FirstofallN1 = ri=1(bi(λi−i)+ai+c λi2−i )=14. tThheednewteermhainvaenttooPcfotmhepmutaetreiaxchMm=s,t(m=h((cid:16))λs−s(cid:17))(1−.c)+(1λ−s−c−sd)(s−t)+at−bsi,1≤ s,t ≤randthen s,t 1 s,t r ≤ ≤ Wehave: m1,1 = 52 = 2 (1Q5ix=i1)(1−3xi)(1 xi) =(x2+1)(x4+x3+x2+x+1) h i i=1 − · i=1 − m = 2 =1Q Q 1,2 2 m =h0i=0 1,3 2 m2,1 =h51i= 1 (1Q5ix=i1)(1−4xi)(1 xi) = x4+x3+x2+x+1 m2,2 =h21i= Qi1=1(1Q−2ix=i1)(·1Q−i1x=i1)(1−xi) = x+1 m =h0i=0Qi=1 − ·Qi=1 − 2,3 1 m =mh i =m =1. 3,1 3,2 3,3 Thisway (x2+1)(x4+x3+x2+x+1) 1 0 M = x4+x3+x2+x+1 x+1 0 , so det(M) = x7 +2x6+3x5 +3x4 +31x3 +2x2 + x. The1gener1atingfunctionis then x14det(M)= x15+2x16+3x17+3x18+3x19+2x20+x21. Ifweconsider,forexample,n(π) = 17,thecoefficientof x17 intheabovepolynomial is 3, so it tells us that there are exactly three shifted (1,0)-plane partitions of shape 9 λ=(3,3,3),suchthata=(6,3,1)andb=(1,1,1). Wecanwritethemdownforcompleteness’sake: 6 5 1 6 4 2 6 3 2 0 3 1 , 0 3 1 , 0 3 2 0 0 1 0 0 1 0 0 1 ♦ 4 Bar Code associated to a finite set of terms Inthissection,weprovidealanguageinordertorepresentzerodimensionalmonomial ideals,whicharecharacterizedbyhavingaconstantaffineHilbertpolynomial. Inthecaseoftwoorthreevariables,thiswillallowustoestablishaconnectionbetween (strongly)stable ideals I ⊳ with constant affine Hilbert polynomial H (t) = p N I P ∈ andsomeparticularplanepartitionsoftheintegernumber p. Moreprecisely,wewill giveacombinatorialrepresentationfortheassociated(finite)lexicographicalGroebner escalierN(I). Firstofall,wepointoutthat,since (cid:27) Nn,atermxγ = xγ1 xγn canberegardedas T 1 ··· n thepoint(γ ,...,γ )inthen-dimensionalspace. 1 n Usingthisconvention,wecanrepresentN(I)withan-dimensionalpicture,calledtower structureofI (formoredetailssee[11][39,II.33]). Example14. ConsidertheradicalidealI =(x2 x ,x x ,x2 2x )⊳k[x ,x ],definedby 1− 1 1 2 2− 2 1 2 itslexicographicalreducedGroebnerbasis. Sincew.r.t.Lex3,wehaveT(x2 x )= x2, 1− 1 1 T(x x ) = x x ,T(x2 2x ) = x2,wecanconcludethatthelexicographicalGroebner 1 2 1 2 2− 2 2 escalierofI isN(I)= 1,x ,x ,soitcanberepresentedbythefollowingpicture: 1 2 { } x2 x2 1 x1 x1 ♦ Foraradicalideal I,noticethatif N(I) < also V(I) < (and,moreprecisely,it | | ∞ | | ∞ holds N(I) = V(I)),sotheassociatedvarietyconsistsofafinitesetofpoints. | | | | It has been proved by Cerlienco-Mureddu ([13]) that, in this case, any ordering on thepointsinV(I)givesapreciseone-to-onecorrespondencebetweenthetermsinN(I) and the points in V(I), so it is also possible to label the points in the tower structure withthecorrespondingpointoftheorderedV(I). 3Since,inthispaper,weareworkingwiththelexicographicalorder,Iprecisedhere“w.r.t.”Lex.Anyway, itcanbeeasilyobservedthatT(x21−x1)=x21,T(x1x2)=x1x2,T(x22−2x2)=x22triviallyholdsforeachterm order. 10