ebook img

Bar code for monomial ideals PDF

0.41 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bar code for monomial ideals

Bar code for monomial ideals 7 1 MichelaCeria 0 DepartmentofMathematics 2 UniversityofTrento n ViaSommarive14,38123,Trento a J [email protected] 7 ] O Abstract C Aimofthispaperistocount0-dimensionalstableandstronglystableidealsin . 2and3variables,giventheir(constant)affineHilbertpolynomial. h Todoso,wedefinetheBarCode,abidimensionalstructurerepresentingany t a finitesetoftermsMandallowingtodesumemanypropertiesofthecorresponding m monomial ideal I, if M is an order ideal. Then, we use it to give a connection [ between(strongly)stablemonomialidealsandintegerpartitions,thusallowingto countthemviaknowndeterminantalformulas. 1 v 1 1 Introduction 8 7 1 StronglystableidealsplayaspecialroleinthestudyofHilbertscheme,introducedfirst 0 byGrothendieck[22], since their escalier allowsto study the Hilbertfunctionofany 1. homogeneousideal,exploitingthetheoryofGroebnerbases,aspointedoutbyBayer 0 [5]andEisenbud[18]. 7 The notion of generic initial ideal was introducedby Galligo [21] with the name 1 ofGrauertinvariant.Galligoprovedthatthegenericinitialidealofanyhomogeneous : v idealisclosedw.r.ttheactionoftheBorelgroupandgaveacombinatorialcharacter- i izationofsuch ideals, providedthattheyare definedona field of characteristiczero. X AlsoEisenbudandPeeva[18,42],focusedonthatmonomialideals,labellingthem0- r a Borel-fixedideals. Later,Aramova-Herzog[2,3]renamedthemstronglystableideals. Acombinatorialdescriptionoftheidealsclosedw.r.ttheactionoftheBorelgroup overapolynomialringonafieldofcharacteristicp>0hasbeenprovidedbyParduein hisThesis[41]andGalligo’sresulthasbeenextendedtothatsettingbyBayer-Stillman [6]. ThenotionofstableidealhasbeenintroducedbyEliahou-Kervaire[19]asagen- eralization of 0-Borel-fixed ideals. They were able to give a minimal resolution for stableideals. SuchminimalresolutionwasusedbyBigatti[10]andHulett[26]toextendMacaulay’s result[37];theyprovedthatthelex-segmentidealhasmaximalBettinumbers,among allidealssharingthesameHilbertfunction. 1 In connectionwith the studyofHilbertschemes[8, 9, 14, 33, 38, 45] ithasbeen considered relevant to list all the stable ideals [7] and strongly stable ideals [15, 34] withafixedHilbertpolynomial. Aimofthispaperistocountzerodimensionalstableandstronglystableidealsin2 and3variables,giventheir(constant)affineHilbertpolynomial. To doso, we first introducea bidimensionalstructure, calledBarCodewhichal- lows, a priori,to representany(finite1) setofterms M and, if M is anorderideal, to authomaticallydesume many propertiesof the correspondingmonomialideal I. For example,aPommaretbasis[48,12]ofI canbeeasilydesumed. TheBar Code isstrictly connectedto Felzeghy-Rath-Ronyay’sLexTrie[20, 35], evenifourgoalandmethodsarecompletelydifferentfromtheirs. Using the Bar Code, we providea connectionbetween stable and stronglystable monomialidealsandintegerpartitions. For the case of two variables, we see that there is a biunivocal correspondence between (strongly) stable ideals with affine Hilbert polynomial p and partitions of p withdistinctparts. Thecase ofthreevariablesis morecomplicatedandsomemoretechnologyisre- quired.ThankstotheBarCode,weprovideabijectionbetween(strongly)stableideals andsomespecialplanepartitionsoftheirconstantaffineHilbertpolynomialp. These plane partitions have been studied by Krattenthaler [31, 32], who proved determinantalformulastofindtheirnormgeneratingfunctionsand-finally-tocount them. Asanexample,weconsiderthestablemonomialideal I =(x3,x x ,x2,x2x ,x x ,x2)⊳k[x ,x ,x ], 1 1 1 2 2 1 3 2 3 3 1 2 3 whoseGroebnerescalierisN(I )= 1,x ,x2,x ,x ,x x . 1 { 1 1 2 3 1 3} ItcanberepresentedbytheBarCodebelow 1 x1 x21 x2 x3 x1x3 x31 x1x2 x21x3 x22 x2x3 x2 3 anditcorrespondstotheplanepartition 3 1 2 ThecorrespondencecanbeseenobservingtherowsoftheBarCodeabove: sincethe bottom row is composed by two segments, the plane partition has exactly two rows. The numberof entriesin the i-th row of the partition, i = 1,2(i.e. 2 and 1 resp.), is givenbythenumberofsegmentsinthemiddle-row,lyingoverthei-thsegmentofthe bottomrow. Finally,theentriesarerepresentedbythenumberofsegmentsinthetop row,lyingoverthesegmentsrepresentingthecorrespondingentry. 1Thereis alsothe possibility tohaveinfinite Bar Codes forinfinite sets ofterms, butitis outofthe purposeofthispaper,sowewillonlyseeanexampleforcompleteness’sake. 2 Exploiting this bijection and the determinantalformulasby Krattenthaler, we are finallyabletocountstableandstronglystableidealsinthreevariables. Even if the Bar Code can easily represent finite sets of terms in any number of variables, the generalization of our results to the case of 4 or more variables would require the introduction of n-dimensionalpartitions, for which, in my knowledge, it doesnotexista completestudyfromthe pointofview ofcountingthem2, so, in this paper,wedonotextensivelydealwiththem. 2 Some algebraic notation Throughoutthispaper,inconnectionwithmonomialideals,wemainlyfollowtheno- tationof[39]. Wedenoteby := k[x ,...,x ]thegradedringofpolynomialsinnvariableswithco- 1 n P efficientsinthefieldk,assuming,onceforall,thatchar(k)=0. Thesemigroupofterms,generatedbytheset x ,...,x is: 1 n { } := xγ := xγ1 xγn γ:=(γ ,...,γ ) Nn . T { 1 ··· n | 1 n ∈ } If τ = xγ1 xγn, thendeg(τ) = n γ is the degreeof τ and, for each h 1,...,n 1 ··· n i=1 i ∈ { } degh(τ):=γhistheh-degreeofτ.P Foreachd N, isthed-degreepartof ,i.e. := xγ deg(xγ) = d andit d d ∈ T T T { ∈ T| } iswellknownthat|Td| = n+dd−1 . Foreachsubset M ⊆ T weset Md = M∩Td. The symbol (d)denotesthed(cid:16)egree(cid:17) dpartof ,namely (d)= xγ deg(xγ) d . T ≤ T T { ∈T| ≤ } Analogously, (d)denotesthedegree d partof andgivenanidealI of , I(d)is P ≤ P P itsdegree dpart,i.e. I(d)= I (d). ≤ ∩P Wenoticethat (d)isthevectorspacegeneratedby (d)andweobservethatI(d)is P T avectorsubspaceof (d). P Asemigroupordering<on isatotalordering suchthatτ <τ ττ <ττ , τ,τ ,τ 1 2 1 2 1 2 T ⇒ ∀ ∈ . Foreach semigroupordering< on , we can representa polynomial f as a T T ∈ P linearcombinationoftermsarrangedw.r.t.<,withcoefficientsinthebasefieldk: s f = c(f,τ)τ= c(f,τ)τ : c(f,τ) k , τ , τ >...>τ , i i i ∗ i 1 s ∈ ∈T Xτ Xi=1 ∈T withT(f):=τ theleadingtermof f,Lc(f):=c(f,τ )theleadingcoefficientof f and 1 1 tail(f):= f c(f,T(f))T(f)thetailof f. − A term orderingisa semigroupordering suchthat1 islower thaneveryvariableor, equivalently,itisawellordering. Unlessotherwisespecified,weconsiderthelexicographicalorderinginducedby x <...< x ,i.e: 1 n xγ11···xγnn <Lex xδ11···xδnn ⇔∃j|γj <δj, γi =δi, ∀i> j, 2In[1],Chapter11,theauthorobserves: Surprisingly,thereismuchofinterestwhenthedimensionis1or2,andverylittlewhenthe dimensionexceeds2. 3 whichisatermordering. Sinceinallthepaperwewillconsiderthelexicographicalordering,noconfusion mayariseandsowedropthesubscriptanddenoteitby<insteadof< . Lex Foreachtermτ and x τ,theonlyυ suchthatτ = x υiscalled j-thprede- j j ∈ T | ∈ T cessorofτ. Given a term τ , we denote by min(τ) the smallest variable x, i 1,...,n , s.t. i ∈ T ∈ { } x τ. i | For M ,wedenoteby M thelistobtainedbyorderingtheelementsof M increas- ⊂ T inglyw.r.t. Lex.Forexample,ifM = x ,x2 k[x ,x ], x < x ,M = x2,x . { 2 1}⊂ 1 2 1 2 { 1 2} Asubset J isasemigroupidealifτ J στ J, σ ;asubsetN ⊆ T ∈ ⇒ ∈ ∀ ∈ T ⊆ T isanorderidealifτ N σ N στ. WehavethatN isanorderidealifand ∈ ⇒ ∈ ∀ | ⊆ T onlyif N= J isasemigroupideal. T \ Given a semigroup ideal J we define N(J) := J. The minimal set of ⊂ T T \ generatorsG(J)ofJ,calledthemonomialbasisofJ,satisfiestheconditionsbelow G(J) := τ J eachpredecessorof τ N(J) { ∈ | ∈ } = τ N(J) τ isanorderideal, τ<N(J) . { ∈T | ∪{ } } For all subsets G , TG := T(g), g G and T(G) is the semigroup ideal of ⊂ P { } { ∈ } leadingtermsdefinedasT(G):= τT(g), τ ,g G . { ∈T ∈ } Fixed a term order <, for any ideal I ⊳ the monomialbasis of the semigroup ideal P T(I)=T I iscalledmonomialbasisofIanddenotedagainbyG(I),whereastheideal { } In(I) := (T(I)) is called initial ideal and the order ideal N(I) := T(I) is called T \ GroebnerescalierofI. ThebordersetofI isdefinedas: B(I) := x τ, 1 h n, τ N(I) N(I) h { ≤ ≤ ∈ }\ = T(I) ( 1 x τ, 1 h n, τ N(I) ). h ∩ { }∪{ ≤ ≤ ∈ } IfI⊳ isanideal,wedefineitsassociatedvarietyas P n V(I)= P k , f(P)=0, f , { ∈ ∀ ∈I} wherekisthealgebraicclosureofk. Definition1. LetI⊳ beanideal.TheaffineHilbertfunctionofI isthefunction P HF :N N I → d dim( (d)/I(d)). 7→ P Fordsufficientlylarge,theaffineHilbertfunctionofI canbewrittenas: l d HF (d)= b , I i l i! Xi=0 − 4 wherel is the KrulldimensionofV(I), b are integerscalled Bettinumbersandb is i 0 positive. Definition 2. The polynomial which is equal to HF (d), for d sufficiently large, is I calledtheaffineHilbertpolynomialofIanddenotedH (d). I 3 On the Integer Partitions Inthissection,wegivesomedefinitionsandtheoremsfromthetheoryofintegerparti- tionsthatwewilluseasatoolforourstudy,mainlyfollowing[1,31,32,49]. Letusstartgivingthedefinitionofintegerpartition. Definition3([49]). Anintegerpartitionofp Nisak-tuple(λ ,...,λ ) Nksuchthat 1 k k λ = pandλ ... λ . ∈ ∈ i=1 i 1 ≥ ≥ k P We regardtwo partitionsasidenticaliftheyonlydifferinthenumberofterminal zeros.Forexample(3,2,1)=(3,2,1,0,0). Thenonzerotermsarecalledpartsofλandwesaythatλhaskpartsifk= i, λ >0 . i |{ }| Wewillmainlydealwiththespecialcaseλ > ... > λ > 0i.e. withintegerpartitions 1 k of pintoknon-zerodistinctparts,denotingbyI thesetcontainingthem,i.e. (p,k) k I := (λ ,...,λ ) Nk, λ >...>λ >0and λ = p . (p,k) 1 k 1 k j { ∈ } Xj=1 The number Q(p,i) of integer partitions of p into i distinct parts is well known in literature.Forexample,wecanfindin[16]theformulasallowingtocomputeit: i p,i N, i,1, Q(p,i)= P p ,i , Q(p,1)=1 ∀ ∈ − 2! ! whereP(n,k)denotesthenumberofintegerpartitionsofnwithlargestpartequaltok: n,k N, P(n,k)= P(n 1,k 1)+P(n k,k), ∀ ∈ − − − with P(n,k)=0 for k>n  P(n,n)=1  P(n,0)=0 Wedefinenowthenotionofplanepartition. Definition 4 ([31]). A plane partition π of a positive integer p N, is a partition of ∈ pinwhichthepartshavebeenarrangedina2-dimensionalarray,weaklydecreasing acrossrowsanddowncolumns. Iftheinequalityisstrictacrossrows(resp. columns), wesaythatthepartitionisrow-strict(respcolumn-strict). Differentconfigurationsareregardedasdifferentplanepartitions. Thenormofπisthesumn(π):= π ofallitsparts. i,j i,j P 5 We pointoutthatanintegerpartition(see Definition3)is a simpleandparticular caseofplanepartition. Example5. Anexampleofplanepartitionof p=6is 2 1 1 1 1 whichisdifferentfromtheplanepartition 2 1 1 1 1 ♦ In sections6, 7, we will beinterestedin some particularplanepartitions, thatwe defineinwhatfollows. Definition6([31]). LetD denotethesetofallr-tuplesλ=(λ ,...,λ )ofintegerswith r 1 r λ ... λ . 1 r ≥ ≥ Forλ,µ D ,wewriteλ µifλ µ foralli= 1,2,...,r. Letc,darbitraryintegers r i i ∈ ≥ ≥ andλ,µ D ,withλ µ. Wecallanarrayρofintegersoftheform r ∈ ≥ ρ ρ ... ... ... ρ 1,µ1+1 1,µ1+2 1,λ1 ρ ... ... ... ... ... ρ 2,µ2+1 2,λ2 ... ... ... ... ρ ... ... ρ r,µr+1 r,λr a(c,d)-planepartitionofshapeλ/µif ρ ρ +cfor1 i r, µ < j<λ, i,j i,j+1 i i ≥ ≤ ≤ ρ ρ +dfor1 i r 1, µ < j λ . i,j i+1,j i i+1 ≥ ≤ ≤ − ≤ Inthecaseµ=0,weshortlysaythatρisofshapeλ. Wedenoteby (c,d)thesetof(c,d)-planepartitionsofshapeλ. λ P A (1,1)-plane partition containing only positive parts is a row and column-strict plane partition; these partitions will be useful while dealing with stable ideals (see section6). Definition7([32]). Letc,dbearbitraryintegersandλbeapartitionwithλ r. We r ≥ call“shifted(c,d)-planepartitionof shapeλ”anarrayπofintegersoftheform π π ... ... ... ... ... ... π 1,1 1,2 1,λ1 π ... ... ... ... ... π 2,2 2,λ2 ... ... ... ... ... π ... ... π r,r r,λr 6 andforwhich π π +cfor1 i r, i j<λ, i,j i,j+1 i ≥ ≤ ≤ ≤ π π +dfor1 i r 1, i< j λ . i,j i+1,j i+1 ≥ ≤ ≤ − ≤ Wepointoutthat,accordingtodefinition7,thereareλ i+1integersinthei-th i − row. We denote by (c,d) the set of shifted (c,d)-planepartitionsof shape λ. These λ S partitionswillbeusefulinsection7,wherewewillcountstronglystableideals. Example8. Theplanepartition 5 4 3 4 1 isa(1,1)-planepartitionwithshapeλ=(3,2)andnorm17. Ontheotherhand,theplanepartition 5 4 3 4 1 isa shifted(1,0)-planepartitionofshapeλ = (3,3)andnorm17. Itcontainsλ = 3 1 elementsinthefirstrowandλ 1=2elementsinthesecondrow. 2 − ♦ Weintroducenowthenotionofnormgeneratingfunction,forcountingplanepar- titions. Definition9([31]). ThenormgeneratingfunctionforaclassC of(c,d)-planeparti- tionsis xn(π). Xπ C ∈ Ifxisanindeterminate,weintroducethex-notations(see[31]): [n]=1 xn − [n]!=[1][2] [n], [0]!=1 ··· n [n]! = , ifn k,0. "k# [k]![n k]! ≥ − Ifk=0, n =1;ifk,0andn<k,thenweset n =0. k k h i h i Theorems10and12giveawaytocomputethenormgeneratingfunctionforplane partitionsoftheformsintroducedinDefinitions6and7,undersomehypothesesonthe sizeoftheirparts. LetusstartwiththeplanepartitionsofDefinition6. 7 Theorem10(Krattenthaler,[31]). Letc,dbearbitraryintegers,λ,µ D andleta,b r ∈ ber-tuplesofintegerssatisfying a c(µ µ )+(1 d) a i i i+1 i+1 − − − ≥ b +c(λ λ )+(1 d) b i i i+1 i+1 − − ≥ fori=1,2,...,r 1. Then,denotin−gN1(s,t)=bs(λs−s−µt+t)+(1−c−d) µt+2s−t − µ2t +c λs−s2−µt+t , thepolynomial h(cid:16) (cid:17) (cid:16) (cid:17)i (cid:16) (cid:17) (1 c)(λ µ) d(s t)+a b +c det1≤s,t≤r xN1(s,t)" − s−λst −s µ−t+t t− s #!, − − is the norm generating function for (c,d)-planepartitions of shape λ/µ in which the firstpartinrowiisatmosta andthelastpartinrowiisatleastb. i i Example11. Letusconsiderthe(1,1)-planepartitionsofshapeλ = (2,1)(soµ = 0), such thata = (4,3)and b = (1,1), i.e. row and columnstrict plane partitionsof the form ρ ρ 1,1 1,2 ρ2,1 0 ! with ρ 4, 1 ρ 3, ρ 1, With the notation introduced above, we have 1,1 2,1 1,2 ≤ ≤ ≤ ≥ r=2. Since 4=a c(µ µ )+(1 d) a =3 1 1 2 2 − − − ≥ 2=b +c(λ λ )+(1 d) b =1, 1 1 2 2 − − ≥ wecanapplytheformulaofTheorem10,which,substitutingourdata,turnsouttobe significantlysimplified: (s t)+a b +1 det1≤s,t≤2 xN1(s,t)"− −λs st+−t s #!, − whereN1(s,t)=bs(λs−s+t)+(−1) s2−t + λs−2s+t . Now, we have N(1,1) = (2 1 + 1)h(cid:16)+ (cid:17)2i =(cid:16) 2; N(cid:17)(1,2) = (2 1 + 2) + 3 = 5; − 2 − 2 (cid:16) (cid:17) x3 4 x(cid:16)6(cid:17)4 N(2,1)= 0;N(2,2)= (1 2+2) = 1,sowehavetocomputedet 2 3 = −  3h i xh3i  det x3(1+x2)(1+x+x2) x5(1+x)(1+x2) = x10+2x9+3x8+3xh70i+3x6+h1xi5+x4 1 x(1+x+x2) ! Forexample,thereareexactly3partitionswithnorm8,namely 4 1 4 2 4 3 , , 3 0 ! 2 0 ! 1 0 ! ♦ We see now how to construct the norm generating function for the partitions of Definition7. 8 Theorem 12 (Krattenthaler, [32]). Let c,d be arbitrary integers, λ a partition with λ randleta,bber-tuplesofintegerssatisfying r ≥ a c d a i i+1 − − ≥ b +c(λ λ )+(1 d) b i i i+1 i+1 − − ≥ fori=1,2,...,r−1. Then,denotingN1 = ri=1(bi(λi−i)+ai+c λi2−i ),thepolynomial P (cid:16) (cid:17) (λ s)(1 c)+(1 c d)(s t)+a b xN1det1≤s,t≤r " s− − λ−s −s − t− s#!, − isthenormgeneratingfunctionforshifted(c,d)-planepartitionsofshapeλinwhich thefirstpartinrowiisequaltoa andthelastpartinrowiisatleastb. i i Example13. Letusconsidertheshifted(1,0)-planepartitionsofshapeλ = (3,3,3), suchthata=(6,3,1)andb=(1,1,1).Bydefinition,theyarematrices π π π 1,1 1,2 1,3  0 π2,2 π2,3   0 0 π3,3  withπ =6,π =3,π =1. Moreover,π ,π 1. 1,1 2,2 3,3 1,3 2,3 ≥ Wecomputethenormgeneratingfunctionforthesepartitions,viaTheorem12. FirstofallN1 = ri=1(bi(λi−i)+ai+c λi2−i )=14. tThheednewteermhainvaenttooPcfotmhepmutaetreiaxchMm=s,t(m=h((cid:16))λs−s(cid:17))(1−.c)+(1λ−s−c−sd)(s−t)+at−bsi,1≤ s,t ≤randthen s,t 1 s,t r ≤ ≤ Wehave: m1,1 = 52 = 2 (1Q5ix=i1)(1−3xi)(1 xi) =(x2+1)(x4+x3+x2+x+1) h i i=1 − · i=1 − m = 2 =1Q Q 1,2 2 m =h0i=0 1,3 2 m2,1 =h51i= 1 (1Q5ix=i1)(1−4xi)(1 xi) = x4+x3+x2+x+1 m2,2 =h21i= Qi1=1(1Q−2ix=i1)(·1Q−i1x=i1)(1−xi) = x+1 m =h0i=0Qi=1 − ·Qi=1 − 2,3 1 m =mh i =m =1. 3,1 3,2 3,3 Thisway (x2+1)(x4+x3+x2+x+1) 1 0 M = x4+x3+x2+x+1 x+1 0 , so det(M) = x7 +2x6+3x5 +3x4 +31x3 +2x2 + x. The1gener1atingfunctionis then x14det(M)= x15+2x16+3x17+3x18+3x19+2x20+x21. Ifweconsider,forexample,n(π) = 17,thecoefficientof x17 intheabovepolynomial is 3, so it tells us that there are exactly three shifted (1,0)-plane partitions of shape 9 λ=(3,3,3),suchthata=(6,3,1)andb=(1,1,1). Wecanwritethemdownforcompleteness’sake: 6 5 1 6 4 2 6 3 2  0 3 1 ,  0 3 1 ,  0 3 2   0 0 1   0 0 1   0 0 1  ♦ 4 Bar Code associated to a finite set of terms Inthissection,weprovidealanguageinordertorepresentzerodimensionalmonomial ideals,whicharecharacterizedbyhavingaconstantaffineHilbertpolynomial. Inthecaseoftwoorthreevariables,thiswillallowustoestablishaconnectionbetween (strongly)stable ideals I ⊳ with constant affine Hilbert polynomial H (t) = p N I P ∈ andsomeparticularplanepartitionsoftheintegernumber p. Moreprecisely,wewill giveacombinatorialrepresentationfortheassociated(finite)lexicographicalGroebner escalierN(I). Firstofall,wepointoutthat,since (cid:27) Nn,atermxγ = xγ1 xγn canberegardedas T 1 ··· n thepoint(γ ,...,γ )inthen-dimensionalspace. 1 n Usingthisconvention,wecanrepresentN(I)withan-dimensionalpicture,calledtower structureofI (formoredetailssee[11][39,II.33]). Example14. ConsidertheradicalidealI =(x2 x ,x x ,x2 2x )⊳k[x ,x ],definedby 1− 1 1 2 2− 2 1 2 itslexicographicalreducedGroebnerbasis. Sincew.r.t.Lex3,wehaveT(x2 x )= x2, 1− 1 1 T(x x ) = x x ,T(x2 2x ) = x2,wecanconcludethatthelexicographicalGroebner 1 2 1 2 2− 2 2 escalierofI isN(I)= 1,x ,x ,soitcanberepresentedbythefollowingpicture: 1 2 { } x2 x2 1 x1 x1 ♦ Foraradicalideal I,noticethatif N(I) < also V(I) < (and,moreprecisely,it | | ∞ | | ∞ holds N(I) = V(I)),sotheassociatedvarietyconsistsofafinitesetofpoints. | | | | It has been proved by Cerlienco-Mureddu ([13]) that, in this case, any ordering on thepointsinV(I)givesapreciseone-to-onecorrespondencebetweenthetermsinN(I) and the points in V(I), so it is also possible to label the points in the tower structure withthecorrespondingpointoftheorderedV(I). 3Since,inthispaper,weareworkingwiththelexicographicalorder,Iprecisedhere“w.r.t.”Lex.Anyway, itcanbeeasilyobservedthatT(x21−x1)=x21,T(x1x2)=x1x2,T(x22−2x2)=x22triviallyholdsforeachterm order. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.