DIMACS Technical Report 94-2 January 1994 Ballot numbers, alternating products, and the Erdo}s-Heilbronn conjecture by 1 Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx, New York 10468 e-mail: [email protected] 1 ThisresearchwassupportedinpartbygrantsfromthePSC-CUNYResearchAwardProgram. The paper was written while I was a visitor at the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) at Rutgers University, and I thank DIMACS for its hospitality. DIMACS is a cooperative project of Rutgers University, Princeton University, AT&T Bell Laboratories and Bellcore. DIMACS is an NSF Science and Technology Center, funded under contract STC{91{19999; and also receives support from the New Jersey Commission on Science and Technology. { 1 { 1 Introduction Let A be a subset of an abelian group. Let hA denote the set of all sums of h elements of A ^ with repetitions allowed, and let h A denote the set of all sums of h distinct elements of A, that is, all sums of the form a1 +(cid:1)(cid:1)(cid:1)+ah, where a1;:::;ah 2 A and ai 6= aj for i 6= j. Let Abea setof k congruenceclassesmodulo a primep. TheCauchy-Davenport theorem states that j2Aj (cid:21) min(p;2k (cid:0)1); and, by induction, jhAj (cid:21) min(p;hk (cid:0)h+1) for every h (cid:21) 2. Erdo}s and Heilbronn conjectured 30 years ago that ^ j2 Aj (cid:21) min(p;2k (cid:0)3): They did not include this conjecture in their paper on addition of residue classes [9], but Erd}os has frequently mentioned this problem in lectures and papers (for example, Erd}os- Graham [8, p. 95]). Dias da Silva and Hamidoune recently prove this conjecture. They used linear algebra and the representation theory of the symmetric group to show that ^ 2 jh Aj (cid:21) min(p;hk (cid:0)h +1) for every h (cid:21) 2. The purpose of this paper is to give a complete and elementary exposition of this proof. Instead of representation theory, we will use the combinatorics of the h-dimensional ballot numbers. 2 Multi-dimensional ballot numbers h The standard basis for R is the set of vectors fe1;:::;ehg, where e1 = (1;0;0;0;:::;0) e2 = (0;1;0;0;:::;0) . . . eh = (0;0;0;:::;0;1): h h h The lattice Z is the subgroup of R generated by the set fe1;:::;ehg, so Z is the set of h vectors in R with integral coordinates. Let h a = (a0;a1;:::;ah(cid:0)1) 2 Z and h b = (b0;b1;:::;bh(cid:0)1) 2 Z : { 2 { h A path in Z is a (cid:12)nite sequence of lattice points a = v0;v1;:::;vm = b such that vj (cid:0)vj(cid:0)1 2 fe1;:::;ehg for j = 1;:::;m. Let vj(cid:0)1;vj be successive points on a path. We call this a step in the direction ei if vj = vj(cid:0)1 +ei: The vector a is called nonnegative if ai (cid:21) 0 for i = 0;1;:::;h(cid:0)1. We write a (cid:20) b if b(cid:0)a is a nonnegative vector. Let P(a;b) denote the number of paths from a to b. The path function P(a;b) is translation invariant in the sense that P(a+c;b+c) = P(a;b) h for all a;b;c 2 Z . In particular, P(a;b) = P(0;b(cid:0)a): The path function satis(cid:12)es the boundary conditions P(a;a) = 1; and P(a;b) > 0 if and only if a (cid:20) b; If a = v0;v1;:::;vm = b is a path, then vm(cid:0)1 = b(cid:0)ei for some i = 1;:::;h, and there is a unique path from b(cid:0)ei to b. It follows that the path counting function P(a;b) also satis(cid:12)es the di(cid:11)erence equation hX(cid:0)1 P(a;b) = P(a;b(cid:0)ei): i=0 Let a (cid:20) b. For i = 0;1;:::;k (cid:0)1, every path from a to b contains exactly bi (cid:0)ai steps in the direction ei+1. Let hX(cid:0)1 m = (bi (cid:0)ai): i=0 { 3 { Every path from a to b has exactly m steps, and the number of di(cid:11)erent paths is the multinomial coe(cid:14)cient (cid:16) (cid:17) P h(cid:0)1 i=0(bi (cid:0)ai) ! m! P(a;b) = Q = Q : (1) h(cid:0)1 h(cid:0)1 i=0(bi(cid:0)ai)! i=0(bi (cid:0)ai)! Let h (cid:21) 2. There are h candidates in an election. The candidates will be labelled by the integers 0;1;:::;h(cid:0)1. Suppose that m0 votes have already been cast, and that candidate i has received ai votes. Then m0 = a0 +a1+(cid:1)(cid:1)(cid:1)+ah(cid:0)1: We shall call v0 = a = (a0;a1;:::;ah(cid:0)1) the initial ballot vector. There are m remaining voters, each of whom has one vote, and these votes will be cast sequentially. Let vi;k denote the number of votes that candidate i has received after k additional votes have been cast. We represent the distribution of votes at step k by the ballot vector vk = (v0;k;v1;k;:::;vh(cid:0)1;k): Then v0;k +v1;k +(cid:1)(cid:1)(cid:1)+vh(cid:0)1;k = k +m0 for k = 0;1;:::;m. Let vm = b = (b0;b1;:::;bh(cid:0)1) be the (cid:12)nal ballot vector. It follows immediately from the de(cid:12)nition of the ballot vectors that vk (cid:0)vk(cid:0)1 2 fe1;:::;ehg for k = 1;:::;m, and so a = v0;v1;:::;vm = b h is a path in Z from a to b. Therefore, the number of distinct sequences of m votes that can lead from the initial ballot vector a to the (cid:12)nal ballot vector b is the multinomial coe(cid:14)cient (cid:16) (cid:17) P h(cid:0)1 i=0(bi (cid:0)ai) ! m! Q = Q : h(cid:0)1 h(cid:0)1 i=0 (bi(cid:0)ai)! i=0 (bi (cid:0)ai)! h Let v = (v1;:::;vh) and w = (w1;:::;wh) be vectors in R . The vector v will be called increasing if v1 (cid:20) v2 (cid:20) (cid:1)(cid:1)(cid:1) (cid:20) vh; and strictly increasing if v1 < v2 < (cid:1)(cid:1)(cid:1) < vh: { 4 { Now suppose that the initial ballot vector is a = (0;0;0;:::;0) and that the (cid:12)nal ballot vector b = (b0;b1;:::;bh(cid:0)1) is nonnegative and increasing. Let m = b0 +b1+:::+bh(cid:0)1: Let B(b0;b1;:::;bh(cid:0)1) denote the number of ways that m votes can be cast so that all of the k-th ballot vectors are nonnegative and increasing. This is the classical h-dimensional ballot number. Observe that B(0;0;:::;0) = 1 and B(b0;b1;:::;bh(cid:0)1) > 0 ifand only if(b0;b1;:::;bh(cid:0)1)is a nonnegative,increasing vector. Theseboundary conditions and the di(cid:11)erence equation hX(cid:0)1 B(b0;b1;:::;bh(cid:0)1) = B(b0;:::;bi(cid:0)1;bi(cid:0)1;bi+1;:::;bh(cid:0)1) i=0 completely determine the function B(b0;b1;:::;bh(cid:0)1). There is an equivalent combinatorial problem. Suppose that the initial ballot vector is (cid:3) a = (0;1;2;:::;h(cid:0)1); and that the (cid:12)nal ballot vector b = (b0;b1;:::;bh(cid:0)1) is nonnegative and strictly increasing. Let ! hX(cid:0)1 hX(cid:0)1 h m = (bi (cid:0)i) = bi (cid:0) : 2 i=0 i=0 ^ Let B(b0;b1;:::;bh(cid:0)1) denote the number of ways that m votes can be cast so that all of the ballot vectors vk are nonnegative and strictly increasing. We shall call this the strict h-dimensional ballot number.. h A path v0;v1;:::;vm in Z will be called strictly increasing if every lattice point vk on ^ the path is strictly increasing. Then B(b0;b1;:::;bh(cid:0)1) is the number of strictly increasing (cid:3) paths from a to b = (b0;:::;bh(cid:0)1): The strict h-dimensional ballot numbers satisfy the boundary conditions ^ B(0;1;:::;h(cid:0)1) = 1 { 5 { and ^ B(b0;b1;:::;bh(cid:0)1) > 0 if and only if (b0;b1;:::;bh(cid:0)1) is a nonnegative, strictly increasing vector. These boundary conditions and the di(cid:11)erence equation hX(cid:0)1 ^ ^ B(b0;b1;:::;bh(cid:0)1) = B(b0;:::;bi(cid:0)1;bi(cid:0)1;bi+1;:::;bh(cid:0)1) i=0 ^ completely determine B(b0;b1;:::;bh(cid:0)1). Thereisasimplerelationshipbetweentheh-dimensionalballotnumbersB(b0;b1;:::;bh(cid:0)1) ^ and B(b0;b1;:::;bh(cid:0)1). The lattice point v = (v0;v1;:::;vh(cid:0)1) is nonnegative and strictly increasing if and only if the lattice point 0 (cid:3) v = v(cid:0)(0;1;2;:::;h(cid:0)1) = v(cid:0)a is nonnegative and increasing. It follows that (cid:3) a = v0;v1;v2;:::;vm = b (cid:3) is a path of strictly increasing vectors from a to b if and only if (cid:3) (cid:3) (cid:3) 0;v1 (cid:0)a ;v2 (cid:0)a ;:::;b(cid:0)a (cid:3) is a path of increasing vectors from 0 to b(cid:0)a . Thus, ^ B(b0;b1;:::;bh(cid:0)1) = B(b0;b1 (cid:0)1;b2(cid:0)2;:::;bh(cid:0)1 (cid:0)(h(cid:0)1)): h For 1 (cid:20) i < j (cid:20) h, let Hi;j be the hyperplane in R consisting of all vectors (x1;:::;xn) (cid:16) (cid:17) h such that xi = xj. There are 2 such hyperplanes. A path a = v0;v1;v2;:::;vm = b willbe calledintersecting ifthereexistsat least onevectorvk on thepath such that vk 2 Hi;j for some hyperplane Hi;j. h The symmetric group Sh acts on R as follows: For (cid:27) 2 Sh and v = (v0;v1;:::;vh(cid:0)1) 2 h R , let (cid:27)v = (v(cid:27)(0);v(cid:27)(1);:::;v(cid:27)(h(cid:0)1)): Apath isintersectingifandonly ifthereisa transposition (cid:28) = (i;j) 2 Sh suchthat (cid:28)vk = vk for some lattice point vk on the path. Let I(a;b) denote the number of intersecting paths from a to b. Let J(a;b) denote the number of paths from a to b that do not intersect any of the hyperplanes Hi;j. Then P(a;b) = I(a;b)+J(a;b): { 6 { h Lemma 1 Let a be a lattice point in Z , and let b = (b0;:::;bh(cid:0)1) be a strictly increasing h lattice point in Z . A path from a to b is strictly increasing if and only if it intersects none of the hyperplanes Hi;j, and so ^ (cid:3) B(b0;:::;bh(cid:0)1) = J(a ;b): Proof. Let a = v0;v1;:::;vm = b be a path, and let vk = (v0;k;v1;k;:::;vh(cid:0)1;k) for k = 0;1;:::;m. If the path is strictly increasing, then everyvector on the path is strictly increasing, and so the path does not intersect any of the hyperplanes Hi;j. Conversely, if the path is not strictly increasing, then there exists a greatest integer k such that the lattice point vk(cid:0)1 is not strictly increasing. Then 1 (cid:20) k (cid:20) m, and vj;k(cid:0)1 (cid:20) vj(cid:0)1;k(cid:0)1 for some j = 2;:::;n. Since the vector vk is strictly increasing, we have vj(cid:0)1;k (cid:20) vj;k (cid:0)1: Since vk(cid:0)1 and vk are successive vectors in a path, we have vj(cid:0)1;k(cid:0)1 (cid:20) vj(cid:0)1;k and vj;k (cid:0)1 (cid:20) vj;k(cid:0)1: Combining these inequalities, we obtain vj;k(cid:0)1 (cid:20) vj(cid:0)1;k(cid:0)1 (cid:20) vj(cid:0)1;k (cid:20) vj;k (cid:0)1 (cid:20) vj;k(cid:0)1: This implies that vj;k(cid:0)1 = vj(cid:0)1;k(cid:0)1 and so the vector vk(cid:0)1 lies on the hyperplane Hj(cid:0)1;j. Therefore, if b is a strictly increasing vector, then a path from a to b is strictly increasing if and only if it is non-intersecting, and so J(a;b) is equal to the number of strictly increasing paths from a to b. It follows that (cid:3) ^ J(a ;b) is equal to the strict ballot number B(b0;:::;bh(cid:0)1). This completes the proof. Lemma 2 Let a and b be strictly increasing vectors. Then P((cid:27)a;b) = I((cid:27)a;b) for every (cid:27) 2 Sh;(cid:27) 6= id. { 7 { Proof. If a is strictly increasing and if (cid:27) 2 Sh;(cid:27) 6= id, then (cid:27)a is not strictly increasing, and so every path from (cid:27)a to b must intersect at least one of the hyperplanes Hi;j. This completes the proof. Lemma 3 Let a and b be strictly increasing lattice points. Then X "((cid:27))I((cid:27)a;b) = 0: (cid:27)2Sh Proof. Since a is strictly increasing, it follows that there are h! distinct lattice points of the form (cid:27)a, where (cid:27) 2 Sh, and none of these lattice points lies on a hyperplane Hi;j. Let (cid:10) be the set of all intersecting paths that start at any one of the n! lattice points (cid:27)a and end at b. We shall construct an involution from the set (cid:10) to itself. Let (cid:27) 2 Sh, and let (cid:27)a = v0;v1;:::;vm = b be a path that intersects at least one of the hyperplanes. Let k be the least integer such that vk 2 Hi;j for some i < j. Then k (cid:21) 1 since a is strictly increasing, and the hyperplane Hi;j is uniquely determined since vk lies on a path. Consider the transposition (cid:28) = (i;j) 2 Sh. Then (cid:28)vk = vk 2 Hi;j; (cid:28)(cid:27)a 6= (cid:27)a; and (cid:28)(cid:27)a = (cid:28)v0;(cid:28)v1;:::;(cid:28)vk = vk;vk+1;:::;vm = b is an intersecting path in (cid:10) from (cid:28)(cid:27)a to b. Moreover, k is the least integer such that a lattice point on this new path lies in one of the hyperplanes, and Hi;j is still the unique 2 hyperplane containing vk. Since (cid:28) is the identity permutation for every transposition (cid:28), it follows that if we apply the same mapping to this path from (cid:28)(cid:27)a to b, we recover the original path from (cid:27)a to b. Thus, this mapping is an involution on the set (cid:10) of intersecting paths from the h! lattice points (cid:27)a to b. Moreover, if (cid:27) is an even (resp. odd) permutation, then an intersecting path from (cid:27)a is sent to an intersecting path from (cid:28)(cid:27)a, where (cid:28) is a transposition and so (cid:28)(cid:27) is an odd (resp. even) permutation. It follows that the number of intersectingpaths that start at even permutations of a is equal to the number of intersecting paths that start at odd permutations of a. This means that X X I((cid:27)a;b) = I((cid:27)a;b): (cid:27)2Sh (cid:27)2Sh "((cid:27))=1 "((cid:27))=(cid:0)1 This statement is equivalent to the Lemma. Let [x]k denote the polynomial x(x(cid:0)1)(cid:1)(cid:1)(cid:1)(x(cid:0)k+1). If bi;(cid:27)(i)are nonnegative integers, then [bi](cid:27)(i) = bi(bi (cid:0)1)(bi (cid:0)2):::(bi (cid:0)(cid:27)(i)+1) ( bi!=(bi (cid:0)(cid:27)(i))! if (cid:27)(i) (cid:20) bi = 0 if (cid:27)(i) > bi: { 8 { Theorem 1 Let h (cid:21) 2, and let b0;b1;:::;bh(cid:0)1 be integers such that 0 (cid:20) b0 < b1 < (cid:1)(cid:1)(cid:1) < bh(cid:0)1: Then (cid:16) (cid:17) h (b0+b1 +(cid:1)(cid:1)(cid:1)+bh(cid:0)1 (cid:0) 2 )! Y ^ B(b0;b1;:::;bh(cid:0)1) = (bj (cid:0)bi): b0!b1!(cid:1)(cid:1)(cid:1)bh(cid:0)1! 0(cid:20)i<j(cid:20)h(cid:0)1 (cid:3) h Proof. Let a = (0;1;2;:::;h (cid:0) 1), and let b = (b0;b1;:::;bh(cid:0)1) 2 Z . Applying the previous lemmas, we obtain ^ B(b0;b1;:::;bh(cid:0)1) = (cid:3) = J(a ;b) (cid:3) (cid:3) = P(a ;b)(cid:0)I(a ;b) X (cid:3) (cid:3) = P(a ;b)+ "((cid:27))I((cid:27)a ;b) (cid:27)2Sh (cid:27)6=id X (cid:3) (cid:3) = P(a ;b)+ "((cid:27))P((cid:27)a ;b) (cid:27)2Sh (cid:27)6=id X (cid:3) = "((cid:27))P((cid:27)a ;b) (cid:27)2Sh (cid:16) (cid:17) h X (b0+(cid:1)(cid:1)(cid:1)+bh(cid:0)1 (cid:0) 2 )! = "((cid:27)) Q h(cid:0)1 (cid:27)2Sh i=0(bi (cid:0)(cid:27)(i))! (cid:27)a(cid:3)(cid:20)b (cid:16) (cid:17) h (b0 +(cid:1)(cid:1)(cid:1)+bh(cid:0)1 (cid:0) 2 )! X = "((cid:27))[b0](cid:27)(0)[b1](cid:27)(1)(cid:1)(cid:1)(cid:1)[bh(cid:0)1](cid:27)(h(cid:0)1) b0!b1!(cid:1)(cid:1)(cid:1)bh(cid:0)1! (cid:27)2Sh (cid:27)a(cid:3)(cid:20)b (cid:16) (cid:17) h (b0 +(cid:1)(cid:1)(cid:1)+bh(cid:0)1 (cid:0) 2 )! X = "((cid:27))[b0](cid:27)(0)[b1](cid:27)(1)(cid:1)(cid:1)(cid:1)[bh(cid:0)1](cid:27)(h(cid:0)1) b0!b1!(cid:1)(cid:1)(cid:1)bh(cid:0)1! (cid:27)2Sh (cid:12) (cid:12) (cid:16) (cid:17) (cid:12)(cid:12) 1 [b0]1 [b0]2 (cid:1)(cid:1)(cid:1) [b0]h(cid:0)1 (cid:12)(cid:12) h (cid:12) (cid:12) (b0 +(cid:1)(cid:1)(cid:1)+bh(cid:0)1 (cid:0) 2 )! (cid:12) 1 [b1]1 [b1]2 (cid:1)(cid:1)(cid:1) [b1]h(cid:0)1 (cid:12) = b0!b1!(cid:1)(cid:1)(cid:1)bh(cid:0)1! (cid:12)(cid:12)(cid:12) ... (cid:12)(cid:12)(cid:12) (cid:12) (cid:12) (cid:12) 1 [bh(cid:0)1]1 [bh(cid:0)1]2 (cid:1)(cid:1)(cid:1) [bh(cid:0)1]h(cid:0)1 (cid:12) (cid:16) (cid:17) h (b0 +(cid:1)(cid:1)(cid:1)+bh(cid:0)1 (cid:0) 2 )! Y = (bj (cid:0)bi): b0!b1!(cid:1)(cid:1)(cid:1)bh(cid:0)1! 0(cid:20)i<j(cid:20)h(cid:0)1 This completes the proof. We state the following corollary with the notation that is used later in the proof of the Erd}os-Heilbronn conjecture. { 9 { Corollary 1 Let h (cid:21) 2, let p be a prime number, and let i0;i1;:::;ih(cid:0)1 be integers such that 0 (cid:20) i0 < i1 < (cid:1)(cid:1)(cid:1) < ih(cid:0)1 < p and ! h i0+i1+(cid:1)(cid:1)(cid:1)ih(cid:0)1 < +p: 2 Then ^ B(i0;i1;:::;ih(cid:0)1) 6(cid:17) 0 (mod p): Proof. This follows immediately from the Theorem. 3 A review of linear algebra Let V be a (cid:12)nite-dimensional vector space over a (cid:12)eld F, and let T : V ! V be a linear operator. Let I : V ! V be the identityoperator. For everynonnegative integer i, we de(cid:12)ne i T : V ! V by 0 T (v) = I(v) = v; (cid:16) (cid:17) i i(cid:0)1 T (v) = T T (v) for all v 2 V. To every polynomial n n(cid:0)1 p(x) = cnx +cn(cid:0)1x +(cid:1)(cid:1)(cid:1)+c1x+c0 2 F[x] we associate the linear operator p(T) : V ! V de(cid:12)ned by n n(cid:0)1 p(T) = cnT +cn(cid:0)1T +(cid:1)(cid:1)(cid:1)+c1T +c0I: The set of all polynomials p(x) such that p(T) = 0 forms a nonzero, proper ideal J in the polynomial ring F[x]. Since every ideal in F[x] is principal, there exists a unique monic polynomial pT(x) = pT;V(x) 2 J such that pT(x) divides every other polynomial in J. This polynomial is called the minimal polynomial of T over the vector space V. A subspace W of V is called invariant with respect to T if T(W) (cid:18) W, that is, if T(w) 2 W for all w 2 W. Then T restricted to the subspace W is a linear operator on W with minimal polynomial pT;W(x). Since pT;V(T)(w) = 0 for all w 2 W, it follows that pT;W(x) divides pT;V(x), and so deg(pT;W) (cid:20) deg(pT;V); (2) where deg(p) denotes the degree of the polynomial p. For v 2 V, the cyclic subspace with respect to T generated by v is the smallest subspace of V that contains v and is invariant under the operator T. We denote this subspace by