ebook img

Ballot numbers, alternating products, and the Erdös-Heilbronn conjecture PDF

20 Pages·1994·0.198 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ballot numbers, alternating products, and the Erdös-Heilbronn conjecture

DIMACS Technical Report 94-2 January 1994 Ballot numbers, alternating products, and the Erdo}s-Heilbronn conjecture by 1 Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx, New York 10468 e-mail: [email protected] 1 ThisresearchwassupportedinpartbygrantsfromthePSC-CUNYResearchAwardProgram. The paper was written while I was a visitor at the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) at Rutgers University, and I thank DIMACS for its hospitality. DIMACS is a cooperative project of Rutgers University, Princeton University, AT&T Bell Laboratories and Bellcore. DIMACS is an NSF Science and Technology Center, funded under contract STC{91{19999; and also receives support from the New Jersey Commission on Science and Technology. { 1 { 1 Introduction Let A be a subset of an abelian group. Let hA denote the set of all sums of h elements of A ^ with repetitions allowed, and let h A denote the set of all sums of h distinct elements of A, that is, all sums of the form a1 +(cid:1)(cid:1)(cid:1)+ah, where a1;:::;ah 2 A and ai 6= aj for i 6= j. Let Abea setof k congruenceclassesmodulo a primep. TheCauchy-Davenport theorem states that j2Aj (cid:21) min(p;2k (cid:0)1); and, by induction, jhAj (cid:21) min(p;hk (cid:0)h+1) for every h (cid:21) 2. Erdo}s and Heilbronn conjectured 30 years ago that ^ j2 Aj (cid:21) min(p;2k (cid:0)3): They did not include this conjecture in their paper on addition of residue classes [9], but Erd}os has frequently mentioned this problem in lectures and papers (for example, Erd}os- Graham [8, p. 95]). Dias da Silva and Hamidoune recently prove this conjecture. They used linear algebra and the representation theory of the symmetric group to show that ^ 2 jh Aj (cid:21) min(p;hk (cid:0)h +1) for every h (cid:21) 2. The purpose of this paper is to give a complete and elementary exposition of this proof. Instead of representation theory, we will use the combinatorics of the h-dimensional ballot numbers. 2 Multi-dimensional ballot numbers h The standard basis for R is the set of vectors fe1;:::;ehg, where e1 = (1;0;0;0;:::;0) e2 = (0;1;0;0;:::;0) . . . eh = (0;0;0;:::;0;1): h h h The lattice Z is the subgroup of R generated by the set fe1;:::;ehg, so Z is the set of h vectors in R with integral coordinates. Let h a = (a0;a1;:::;ah(cid:0)1) 2 Z and h b = (b0;b1;:::;bh(cid:0)1) 2 Z : { 2 { h A path in Z is a (cid:12)nite sequence of lattice points a = v0;v1;:::;vm = b such that vj (cid:0)vj(cid:0)1 2 fe1;:::;ehg for j = 1;:::;m. Let vj(cid:0)1;vj be successive points on a path. We call this a step in the direction ei if vj = vj(cid:0)1 +ei: The vector a is called nonnegative if ai (cid:21) 0 for i = 0;1;:::;h(cid:0)1. We write a (cid:20) b if b(cid:0)a is a nonnegative vector. Let P(a;b) denote the number of paths from a to b. The path function P(a;b) is translation invariant in the sense that P(a+c;b+c) = P(a;b) h for all a;b;c 2 Z . In particular, P(a;b) = P(0;b(cid:0)a): The path function satis(cid:12)es the boundary conditions P(a;a) = 1; and P(a;b) > 0 if and only if a (cid:20) b; If a = v0;v1;:::;vm = b is a path, then vm(cid:0)1 = b(cid:0)ei for some i = 1;:::;h, and there is a unique path from b(cid:0)ei to b. It follows that the path counting function P(a;b) also satis(cid:12)es the di(cid:11)erence equation hX(cid:0)1 P(a;b) = P(a;b(cid:0)ei): i=0 Let a (cid:20) b. For i = 0;1;:::;k (cid:0)1, every path from a to b contains exactly bi (cid:0)ai steps in the direction ei+1. Let hX(cid:0)1 m = (bi (cid:0)ai): i=0 { 3 { Every path from a to b has exactly m steps, and the number of di(cid:11)erent paths is the multinomial coe(cid:14)cient (cid:16) (cid:17) P h(cid:0)1 i=0(bi (cid:0)ai) ! m! P(a;b) = Q = Q : (1) h(cid:0)1 h(cid:0)1 i=0(bi(cid:0)ai)! i=0(bi (cid:0)ai)! Let h (cid:21) 2. There are h candidates in an election. The candidates will be labelled by the integers 0;1;:::;h(cid:0)1. Suppose that m0 votes have already been cast, and that candidate i has received ai votes. Then m0 = a0 +a1+(cid:1)(cid:1)(cid:1)+ah(cid:0)1: We shall call v0 = a = (a0;a1;:::;ah(cid:0)1) the initial ballot vector. There are m remaining voters, each of whom has one vote, and these votes will be cast sequentially. Let vi;k denote the number of votes that candidate i has received after k additional votes have been cast. We represent the distribution of votes at step k by the ballot vector vk = (v0;k;v1;k;:::;vh(cid:0)1;k): Then v0;k +v1;k +(cid:1)(cid:1)(cid:1)+vh(cid:0)1;k = k +m0 for k = 0;1;:::;m. Let vm = b = (b0;b1;:::;bh(cid:0)1) be the (cid:12)nal ballot vector. It follows immediately from the de(cid:12)nition of the ballot vectors that vk (cid:0)vk(cid:0)1 2 fe1;:::;ehg for k = 1;:::;m, and so a = v0;v1;:::;vm = b h is a path in Z from a to b. Therefore, the number of distinct sequences of m votes that can lead from the initial ballot vector a to the (cid:12)nal ballot vector b is the multinomial coe(cid:14)cient (cid:16) (cid:17) P h(cid:0)1 i=0(bi (cid:0)ai) ! m! Q = Q : h(cid:0)1 h(cid:0)1 i=0 (bi(cid:0)ai)! i=0 (bi (cid:0)ai)! h Let v = (v1;:::;vh) and w = (w1;:::;wh) be vectors in R . The vector v will be called increasing if v1 (cid:20) v2 (cid:20) (cid:1)(cid:1)(cid:1) (cid:20) vh; and strictly increasing if v1 < v2 < (cid:1)(cid:1)(cid:1) < vh: { 4 { Now suppose that the initial ballot vector is a = (0;0;0;:::;0) and that the (cid:12)nal ballot vector b = (b0;b1;:::;bh(cid:0)1) is nonnegative and increasing. Let m = b0 +b1+:::+bh(cid:0)1: Let B(b0;b1;:::;bh(cid:0)1) denote the number of ways that m votes can be cast so that all of the k-th ballot vectors are nonnegative and increasing. This is the classical h-dimensional ballot number. Observe that B(0;0;:::;0) = 1 and B(b0;b1;:::;bh(cid:0)1) > 0 ifand only if(b0;b1;:::;bh(cid:0)1)is a nonnegative,increasing vector. Theseboundary conditions and the di(cid:11)erence equation hX(cid:0)1 B(b0;b1;:::;bh(cid:0)1) = B(b0;:::;bi(cid:0)1;bi(cid:0)1;bi+1;:::;bh(cid:0)1) i=0 completely determine the function B(b0;b1;:::;bh(cid:0)1). There is an equivalent combinatorial problem. Suppose that the initial ballot vector is (cid:3) a = (0;1;2;:::;h(cid:0)1); and that the (cid:12)nal ballot vector b = (b0;b1;:::;bh(cid:0)1) is nonnegative and strictly increasing. Let ! hX(cid:0)1 hX(cid:0)1 h m = (bi (cid:0)i) = bi (cid:0) : 2 i=0 i=0 ^ Let B(b0;b1;:::;bh(cid:0)1) denote the number of ways that m votes can be cast so that all of the ballot vectors vk are nonnegative and strictly increasing. We shall call this the strict h-dimensional ballot number.. h A path v0;v1;:::;vm in Z will be called strictly increasing if every lattice point vk on ^ the path is strictly increasing. Then B(b0;b1;:::;bh(cid:0)1) is the number of strictly increasing (cid:3) paths from a to b = (b0;:::;bh(cid:0)1): The strict h-dimensional ballot numbers satisfy the boundary conditions ^ B(0;1;:::;h(cid:0)1) = 1 { 5 { and ^ B(b0;b1;:::;bh(cid:0)1) > 0 if and only if (b0;b1;:::;bh(cid:0)1) is a nonnegative, strictly increasing vector. These boundary conditions and the di(cid:11)erence equation hX(cid:0)1 ^ ^ B(b0;b1;:::;bh(cid:0)1) = B(b0;:::;bi(cid:0)1;bi(cid:0)1;bi+1;:::;bh(cid:0)1) i=0 ^ completely determine B(b0;b1;:::;bh(cid:0)1). Thereisasimplerelationshipbetweentheh-dimensionalballotnumbersB(b0;b1;:::;bh(cid:0)1) ^ and B(b0;b1;:::;bh(cid:0)1). The lattice point v = (v0;v1;:::;vh(cid:0)1) is nonnegative and strictly increasing if and only if the lattice point 0 (cid:3) v = v(cid:0)(0;1;2;:::;h(cid:0)1) = v(cid:0)a is nonnegative and increasing. It follows that (cid:3) a = v0;v1;v2;:::;vm = b (cid:3) is a path of strictly increasing vectors from a to b if and only if (cid:3) (cid:3) (cid:3) 0;v1 (cid:0)a ;v2 (cid:0)a ;:::;b(cid:0)a (cid:3) is a path of increasing vectors from 0 to b(cid:0)a . Thus, ^ B(b0;b1;:::;bh(cid:0)1) = B(b0;b1 (cid:0)1;b2(cid:0)2;:::;bh(cid:0)1 (cid:0)(h(cid:0)1)): h For 1 (cid:20) i < j (cid:20) h, let Hi;j be the hyperplane in R consisting of all vectors (x1;:::;xn) (cid:16) (cid:17) h such that xi = xj. There are 2 such hyperplanes. A path a = v0;v1;v2;:::;vm = b willbe calledintersecting ifthereexistsat least onevectorvk on thepath such that vk 2 Hi;j for some hyperplane Hi;j. h The symmetric group Sh acts on R as follows: For (cid:27) 2 Sh and v = (v0;v1;:::;vh(cid:0)1) 2 h R , let (cid:27)v = (v(cid:27)(0);v(cid:27)(1);:::;v(cid:27)(h(cid:0)1)): Apath isintersectingifandonly ifthereisa transposition (cid:28) = (i;j) 2 Sh suchthat (cid:28)vk = vk for some lattice point vk on the path. Let I(a;b) denote the number of intersecting paths from a to b. Let J(a;b) denote the number of paths from a to b that do not intersect any of the hyperplanes Hi;j. Then P(a;b) = I(a;b)+J(a;b): { 6 { h Lemma 1 Let a be a lattice point in Z , and let b = (b0;:::;bh(cid:0)1) be a strictly increasing h lattice point in Z . A path from a to b is strictly increasing if and only if it intersects none of the hyperplanes Hi;j, and so ^ (cid:3) B(b0;:::;bh(cid:0)1) = J(a ;b): Proof. Let a = v0;v1;:::;vm = b be a path, and let vk = (v0;k;v1;k;:::;vh(cid:0)1;k) for k = 0;1;:::;m. If the path is strictly increasing, then everyvector on the path is strictly increasing, and so the path does not intersect any of the hyperplanes Hi;j. Conversely, if the path is not strictly increasing, then there exists a greatest integer k such that the lattice point vk(cid:0)1 is not strictly increasing. Then 1 (cid:20) k (cid:20) m, and vj;k(cid:0)1 (cid:20) vj(cid:0)1;k(cid:0)1 for some j = 2;:::;n. Since the vector vk is strictly increasing, we have vj(cid:0)1;k (cid:20) vj;k (cid:0)1: Since vk(cid:0)1 and vk are successive vectors in a path, we have vj(cid:0)1;k(cid:0)1 (cid:20) vj(cid:0)1;k and vj;k (cid:0)1 (cid:20) vj;k(cid:0)1: Combining these inequalities, we obtain vj;k(cid:0)1 (cid:20) vj(cid:0)1;k(cid:0)1 (cid:20) vj(cid:0)1;k (cid:20) vj;k (cid:0)1 (cid:20) vj;k(cid:0)1: This implies that vj;k(cid:0)1 = vj(cid:0)1;k(cid:0)1 and so the vector vk(cid:0)1 lies on the hyperplane Hj(cid:0)1;j. Therefore, if b is a strictly increasing vector, then a path from a to b is strictly increasing if and only if it is non-intersecting, and so J(a;b) is equal to the number of strictly increasing paths from a to b. It follows that (cid:3) ^ J(a ;b) is equal to the strict ballot number B(b0;:::;bh(cid:0)1). This completes the proof. Lemma 2 Let a and b be strictly increasing vectors. Then P((cid:27)a;b) = I((cid:27)a;b) for every (cid:27) 2 Sh;(cid:27) 6= id. { 7 { Proof. If a is strictly increasing and if (cid:27) 2 Sh;(cid:27) 6= id, then (cid:27)a is not strictly increasing, and so every path from (cid:27)a to b must intersect at least one of the hyperplanes Hi;j. This completes the proof. Lemma 3 Let a and b be strictly increasing lattice points. Then X "((cid:27))I((cid:27)a;b) = 0: (cid:27)2Sh Proof. Since a is strictly increasing, it follows that there are h! distinct lattice points of the form (cid:27)a, where (cid:27) 2 Sh, and none of these lattice points lies on a hyperplane Hi;j. Let (cid:10) be the set of all intersecting paths that start at any one of the n! lattice points (cid:27)a and end at b. We shall construct an involution from the set (cid:10) to itself. Let (cid:27) 2 Sh, and let (cid:27)a = v0;v1;:::;vm = b be a path that intersects at least one of the hyperplanes. Let k be the least integer such that vk 2 Hi;j for some i < j. Then k (cid:21) 1 since a is strictly increasing, and the hyperplane Hi;j is uniquely determined since vk lies on a path. Consider the transposition (cid:28) = (i;j) 2 Sh. Then (cid:28)vk = vk 2 Hi;j; (cid:28)(cid:27)a 6= (cid:27)a; and (cid:28)(cid:27)a = (cid:28)v0;(cid:28)v1;:::;(cid:28)vk = vk;vk+1;:::;vm = b is an intersecting path in (cid:10) from (cid:28)(cid:27)a to b. Moreover, k is the least integer such that a lattice point on this new path lies in one of the hyperplanes, and Hi;j is still the unique 2 hyperplane containing vk. Since (cid:28) is the identity permutation for every transposition (cid:28), it follows that if we apply the same mapping to this path from (cid:28)(cid:27)a to b, we recover the original path from (cid:27)a to b. Thus, this mapping is an involution on the set (cid:10) of intersecting paths from the h! lattice points (cid:27)a to b. Moreover, if (cid:27) is an even (resp. odd) permutation, then an intersecting path from (cid:27)a is sent to an intersecting path from (cid:28)(cid:27)a, where (cid:28) is a transposition and so (cid:28)(cid:27) is an odd (resp. even) permutation. It follows that the number of intersectingpaths that start at even permutations of a is equal to the number of intersecting paths that start at odd permutations of a. This means that X X I((cid:27)a;b) = I((cid:27)a;b): (cid:27)2Sh (cid:27)2Sh "((cid:27))=1 "((cid:27))=(cid:0)1 This statement is equivalent to the Lemma. Let [x]k denote the polynomial x(x(cid:0)1)(cid:1)(cid:1)(cid:1)(x(cid:0)k+1). If bi;(cid:27)(i)are nonnegative integers, then [bi](cid:27)(i) = bi(bi (cid:0)1)(bi (cid:0)2):::(bi (cid:0)(cid:27)(i)+1) ( bi!=(bi (cid:0)(cid:27)(i))! if (cid:27)(i) (cid:20) bi = 0 if (cid:27)(i) > bi: { 8 { Theorem 1 Let h (cid:21) 2, and let b0;b1;:::;bh(cid:0)1 be integers such that 0 (cid:20) b0 < b1 < (cid:1)(cid:1)(cid:1) < bh(cid:0)1: Then (cid:16) (cid:17) h (b0+b1 +(cid:1)(cid:1)(cid:1)+bh(cid:0)1 (cid:0) 2 )! Y ^ B(b0;b1;:::;bh(cid:0)1) = (bj (cid:0)bi): b0!b1!(cid:1)(cid:1)(cid:1)bh(cid:0)1! 0(cid:20)i<j(cid:20)h(cid:0)1 (cid:3) h Proof. Let a = (0;1;2;:::;h (cid:0) 1), and let b = (b0;b1;:::;bh(cid:0)1) 2 Z . Applying the previous lemmas, we obtain ^ B(b0;b1;:::;bh(cid:0)1) = (cid:3) = J(a ;b) (cid:3) (cid:3) = P(a ;b)(cid:0)I(a ;b) X (cid:3) (cid:3) = P(a ;b)+ "((cid:27))I((cid:27)a ;b) (cid:27)2Sh (cid:27)6=id X (cid:3) (cid:3) = P(a ;b)+ "((cid:27))P((cid:27)a ;b) (cid:27)2Sh (cid:27)6=id X (cid:3) = "((cid:27))P((cid:27)a ;b) (cid:27)2Sh (cid:16) (cid:17) h X (b0+(cid:1)(cid:1)(cid:1)+bh(cid:0)1 (cid:0) 2 )! = "((cid:27)) Q h(cid:0)1 (cid:27)2Sh i=0(bi (cid:0)(cid:27)(i))! (cid:27)a(cid:3)(cid:20)b (cid:16) (cid:17) h (b0 +(cid:1)(cid:1)(cid:1)+bh(cid:0)1 (cid:0) 2 )! X = "((cid:27))[b0](cid:27)(0)[b1](cid:27)(1)(cid:1)(cid:1)(cid:1)[bh(cid:0)1](cid:27)(h(cid:0)1) b0!b1!(cid:1)(cid:1)(cid:1)bh(cid:0)1! (cid:27)2Sh (cid:27)a(cid:3)(cid:20)b (cid:16) (cid:17) h (b0 +(cid:1)(cid:1)(cid:1)+bh(cid:0)1 (cid:0) 2 )! X = "((cid:27))[b0](cid:27)(0)[b1](cid:27)(1)(cid:1)(cid:1)(cid:1)[bh(cid:0)1](cid:27)(h(cid:0)1) b0!b1!(cid:1)(cid:1)(cid:1)bh(cid:0)1! (cid:27)2Sh (cid:12) (cid:12) (cid:16) (cid:17) (cid:12)(cid:12) 1 [b0]1 [b0]2 (cid:1)(cid:1)(cid:1) [b0]h(cid:0)1 (cid:12)(cid:12) h (cid:12) (cid:12) (b0 +(cid:1)(cid:1)(cid:1)+bh(cid:0)1 (cid:0) 2 )! (cid:12) 1 [b1]1 [b1]2 (cid:1)(cid:1)(cid:1) [b1]h(cid:0)1 (cid:12) = b0!b1!(cid:1)(cid:1)(cid:1)bh(cid:0)1! (cid:12)(cid:12)(cid:12) ... (cid:12)(cid:12)(cid:12) (cid:12) (cid:12) (cid:12) 1 [bh(cid:0)1]1 [bh(cid:0)1]2 (cid:1)(cid:1)(cid:1) [bh(cid:0)1]h(cid:0)1 (cid:12) (cid:16) (cid:17) h (b0 +(cid:1)(cid:1)(cid:1)+bh(cid:0)1 (cid:0) 2 )! Y = (bj (cid:0)bi): b0!b1!(cid:1)(cid:1)(cid:1)bh(cid:0)1! 0(cid:20)i<j(cid:20)h(cid:0)1 This completes the proof. We state the following corollary with the notation that is used later in the proof of the Erd}os-Heilbronn conjecture. { 9 { Corollary 1 Let h (cid:21) 2, let p be a prime number, and let i0;i1;:::;ih(cid:0)1 be integers such that 0 (cid:20) i0 < i1 < (cid:1)(cid:1)(cid:1) < ih(cid:0)1 < p and ! h i0+i1+(cid:1)(cid:1)(cid:1)ih(cid:0)1 < +p: 2 Then ^ B(i0;i1;:::;ih(cid:0)1) 6(cid:17) 0 (mod p): Proof. This follows immediately from the Theorem. 3 A review of linear algebra Let V be a (cid:12)nite-dimensional vector space over a (cid:12)eld F, and let T : V ! V be a linear operator. Let I : V ! V be the identityoperator. For everynonnegative integer i, we de(cid:12)ne i T : V ! V by 0 T (v) = I(v) = v; (cid:16) (cid:17) i i(cid:0)1 T (v) = T T (v) for all v 2 V. To every polynomial n n(cid:0)1 p(x) = cnx +cn(cid:0)1x +(cid:1)(cid:1)(cid:1)+c1x+c0 2 F[x] we associate the linear operator p(T) : V ! V de(cid:12)ned by n n(cid:0)1 p(T) = cnT +cn(cid:0)1T +(cid:1)(cid:1)(cid:1)+c1T +c0I: The set of all polynomials p(x) such that p(T) = 0 forms a nonzero, proper ideal J in the polynomial ring F[x]. Since every ideal in F[x] is principal, there exists a unique monic polynomial pT(x) = pT;V(x) 2 J such that pT(x) divides every other polynomial in J. This polynomial is called the minimal polynomial of T over the vector space V. A subspace W of V is called invariant with respect to T if T(W) (cid:18) W, that is, if T(w) 2 W for all w 2 W. Then T restricted to the subspace W is a linear operator on W with minimal polynomial pT;W(x). Since pT;V(T)(w) = 0 for all w 2 W, it follows that pT;W(x) divides pT;V(x), and so deg(pT;W) (cid:20) deg(pT;V); (2) where deg(p) denotes the degree of the polynomial p. For v 2 V, the cyclic subspace with respect to T generated by v is the smallest subspace of V that contains v and is invariant under the operator T. We denote this subspace by

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.