EAA Series Łukasz Delong Backward Stochastic Diff erential Equations with Jumps and Their Actuarial and Financial Applications BSDEs with Jumps EAA Series Editors-in-chief HansjoergAlbrecher UniversityofLausanne,Lausanne,Switzerland UlrichOrbanz UniversitySalzburg,Salzburg,Austria Editors MichaelKoller ETHZurich,Zurich,Switzerland ErmannoPitacco UniversitàdiTrieste,Trieste,Italy ChristianHipp UniversitätKarlsruhe,Karlsruhe,Germany AntoonPelsser MaastrichtUniversity,Maastricht,TheNetherlands AlexanderJ.McNeil Heriot-WattUniversity,Edinburgh,UK EAAseriesissuccessoroftheEAALectureNotesandsupportedbytheEuropean Actuarial Academy (EAA GmbH), founded on the 29 August, 2005 in Cologne (Germany)bytheActuarialAssociationsofAustria,Germany,theNetherlandsand Switzerland.EAAoffersactuarialeducationincludingexamination,permanented- ucationforcertifiedactuariesandconsultingonactuarialeducation. actuarial-academy.com Forfurthertitlespublishedinthisseries,pleasegoto http://www.springer.com/series/7879 Łukasz Delong Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications BSDEs with Jumps ŁukaszDelong InstituteofEconometrics,Division ofProbabilisticMethods WarsawSchoolofEconomics Warsaw,Poland ISSN1869-6929 ISSN1869-6937(electronic) EAASeries ISBN978-1-4471-5330-6 ISBN978-1-4471-5331-3(eBook) DOI10.1007/978-1-4471-5331-3 SpringerLondonHeidelbergNewYorkDordrecht LibraryofCongressControlNumber:2013942002 MathematicsSubjectClassification: 60G51,60G57,60H05,60H30 ©Springer-VerlagLondon2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) The fartherbackward youcanlook,the fartherforward youare likelytosee. Winston Churchill Preface AlinearbackwardstochasticdifferentialequationwasintroducedbyBismut(1973) inanattempttosolveanoptimalstochasticcontrolproblembythemaximumprin- ciple. The general theory of nonlinear backward stochastic differential equations with Lipschitz generators was first presented by Pardoux and Peng (1990). Since then,BSDEshavebeenthoroughlystudiedandfoundnumerousapplications.Back- wardstochasticdifferentialequationscanbeusedtosolvestochasticoptimalcontrol problems, establish probabilistic representations of solutions to partial differential equationsanddefinenonlinearexpectations.Sincemanyfinancialproblemscanbe relatedtostochasticoptimizationproblemsandnonlinearexpectations,itisnotsur- prising that BSDEs have become a very important tool in financial mathematics. Nowadays,backwardstochasticdifferentialequationsareanactivefieldofresearch whichisstimulatedbynewfinancialandactuarialapplications. The first motivation for this book is to provide a self-contained overview of the theory of backward stochastic differential equations with jumps and their ap- plications to insurance and finance. Two classical books on BSDEs: “Backward StochasticDifferentialEquations”byElKarouiandMazliak(1997)and“Forward- Backward Stochastic Differential Equations and Their Applications” by Ma and Yong (2000) target theory-oriented readers and miss some important applications which were developed in financial mathematics in recent years. Possible insur- ance applications are not mentioned at all in these books. The recent mono- graph “Some Advances on Quadratic BSDE: Theory–Numerics–Applications” by Dos Reis (2011) points out an actuarial and financial application but the author focuses on advanced theory of quadratic BSDEs, which definitely is not the first stepinthestudyofBSDEs.AllthreebooksdealwithBSDEsdrivenbyBrownian motions and omit BSDEs with jumps which are very important for actuarial and financialmodelling.Thereexistsaconsiderablevolumeofmathematicalpaperson BSDEsandBSDEswithjumps.However,thesepapersarequitedifficulttoaccess byabeginnerinthefieldofBSDEsandstochasticprocesses.Ourgoalistopresent a book on BSDEs with jumps which covers key theoretical results and focuses on applicationsandwhichcanbefollowedbynonspecialistsinstochasticmethods. vii viii Preface Thesecondmotivationforthisbookistopromotebackwardstochasticdifferen- tialequationsintheactuarialcommunity.BSDEsseemnottobewell-knowninin- surancemathematics,despitetheirrecognizedadvantagesinfinancialmathematics and optimal control theory. This state should be changed as many actuarial prob- lems are closely related to financial problems, hence they can be approached with BSDEs.Sinceoptimizationproblemsaregainingimportanceinactuarialmathemat- ics, efficient and modern solution methods for stochastic control problems should bepresented.Whilethemonograph“StochasticControlinInsurance”bySchmidli (2007)dealswithHamilton-Jacobi-Bellmanequations,ourgoalistoshowhowto applyBSDEstosolveoptimizationproblems. Jump processes play a leading role in actuarial modelling. Following Mikosch (2009),wecansaythatmodellingofclaimnumbersbypointprocessesisbreadand butter for the actuary. Jump processes are also used in financial mathematics. Let usremarkthatLévyprocesseshavebeenintroducedwithsuccesstofinancialmod- els, see the monographby Cont and Tankov (2004) and the textbookby Øksendal andSulem(2004)whereHJBequationsareappliedtosolvefinancialoptimization problems for Lévy-driven processes. Due to the importance of jump processes in actuarial and financial applications, we investigate BSDEs driven by a Brownian motionandacompensatedrandommeasure(calledBSDEswithjumps).SinceBS- DEscanbeusedinageneralstochasticframework,weconsidergeneral(quasi-left continuous)jumpprocesses.Consequently,wealsoextendtheactuary’stoolboxfor stochasticmodelling. WehopethatthisbookwillmakeBSDEsmoreaccessibletothosewhoarein- terested in applying these equations to actuarial and financial problems. Our book should be beneficial to students and researchers in applied probability and practi- tioners.Studentsandresearchersinappliedprobabilityshouldgetastrongmathe- maticalintroductiontothetheoryandapplicationsofBSDEs.Practitionersshould learnhowtoderiveasset-liabilitystrategiesinsophisticatedinternalmodels(advo- catedbySolvencyIIDirective),setuphedgingstrategiesandpricecomplexinsur- anceproductswithfinancialguarantees.Thisbookmayalsobeusefulinactuarial educationsinceitcoversappliedstochasticcalculusandstochasticoptimalcontrol theory,whichareincludedintheeducationalsyllabusesoftheGroupeConsultatif andtheInternationalActuarialAssociation. Warsaw,Poland ŁukaszDelong April2013 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 PartI BackwardStochasticDifferentialEquations—TheTheory 2 StochasticCalculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 BrownianMotionandRandomMeasures . . . . . . . . . . . . . . 13 2.2 ClassesofFunctions,RandomVariablesandStochasticProcesses . 18 2.3 StochasticIntegration . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 ThePropertyofPredictableRepresentation . . . . . . . . . . . . . 25 2.5 EquivalentProbabilityMeasures . . . . . . . . . . . . . . . . . . 27 2.6 TheMalliavinCalculus . . . . . . . . . . . . . . . . . . . . . . . 31 3 BackwardStochasticDifferentialEquations—TheGeneralCase . . 37 3.1 ExistenceandUniquenessofSolution. . . . . . . . . . . . . . . . 37 3.2 ComparisonPrinciples . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 ExamplesofLinearandNonlinearBSDEsWithoutJumps . . . . . 58 3.4 ExamplesofLinearandNonlinearBSDEswithJumps . . . . . . . 61 3.5 MalliavinDifferentiabilityofSolution . . . . . . . . . . . . . . . 64 4 Forward-BackwardStochasticDifferentialEquations . . . . . . . . 79 4.1 TheMarkovianStructureofFBSDEs . . . . . . . . . . . . . . . . 79 4.2 The Feynman-KacFormula and the Connection with Partial Integro-DifferentialEquations . . . . . . . . . . . . . . . . . . . . 87 4.3 CoupledFBSDEs . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5 NumericalMethodsforFBSDEs . . . . . . . . . . . . . . . . . . . . 101 5.1 Discrete-TimeApproximationandLeastSquaresMonteCarlo. . . 101 5.2 Discrete-TimeandDiscrete-SpaceMartingaleApproximation . . . 106 5.3 FiniteDifferenceMethod . . . . . . . . . . . . . . . . . . . . . . 109 6 NonlinearExpectationsandg-Expectations . . . . . . . . . . . . . . 113 6.1 ChoquetExpectations . . . . . . . . . . . . . . . . . . . . . . . . 113 6.2 Filtration-ConsistentNonlinearExpectationsandg-Expectations . 114 ix x Contents Part II Backward Stochastic Differential Equations—The Applications 7 CombinedFinancialandInsuranceModel . . . . . . . . . . . . . . . 125 7.1 TheFinancialMarket . . . . . . . . . . . . . . . . . . . . . . . . 125 7.2 TheInsurancePaymentProcess . . . . . . . . . . . . . . . . . . . 127 7.3 AdmissibleInvestmentStrategies . . . . . . . . . . . . . . . . . . 132 8 Linear BSDEs and Predictable Representations of Insurance PaymentProcesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.1 TheApplicationoftheItô’sFormula . . . . . . . . . . . . . . . . 135 8.2 TheApplicationoftheMalliavinCalculus . . . . . . . . . . . . . 142 9 Arbitrage-FreePricing,PerfectHedgingandSuperhedging . . . . . 151 9.1 Arbitrage-FreePricingandMarket-ConsistentValuation . . . . . . 151 9.2 PerfectHedgingintheFinancialMarket . . . . . . . . . . . . . . 152 9.3 SuperhedgingintheFinancialandInsuranceMarket . . . . . . . . 158 9.4 PerfectHedgingintheFinancialandInsuranceMarketCompleted withaMortalityBond . . . . . . . . . . . . . . . . . . . . . . . . 164 10 QuadraticPricingandHedging . . . . . . . . . . . . . . . . . . . . . 173 10.1 QuadraticPricingandHedgingUnderanEquivalentMartingale Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 10.2 QuadraticPricingandHedgingUndertheReal-WorldMeasure . . 177 10.3 QuadraticPricingandHedgingUnderLocalRisk-Minimization . . 189 10.4 Quadratic Pricing and Hedging Under an Instantaneous Mean-VarianceRiskMeasure . . . . . . . . . . . . . . . . . . . . 195 11 UtilityMaximizationandIndifferencePricingandHedging . . . . . 205 11.1 ExponentialUtilityMaximization . . . . . . . . . . . . . . . . . . 205 11.2 ExponentialIndifferencePricingandHedging . . . . . . . . . . . 213 12 PricingandHedgingUnderaLeastFavorableMeasure . . . . . . . 221 12.1 PricingandHedgingUnderModelAmbiguity . . . . . . . . . . . 221 12.2 No-Good-DealPricing . . . . . . . . . . . . . . . . . . . . . . . . 231 13 DynamicRiskMeasures . . . . . . . . . . . . . . . . . . . . . . . . . 235 13.1 DynamicRiskMeasuresbyg-Expectations . . . . . . . . . . . . . 235 13.2 GeneratorsofDynamicRiskMeasures . . . . . . . . . . . . . . . 240 13.3 OptimalRiskSharing . . . . . . . . . . . . . . . . . . . . . . . . 243 PartIII OtherClassesofBackwardStochasticDifferentialEquations 14 OtherClassesofBSDEs . . . . . . . . . . . . . . . . . . . . . . . . . 253 14.1 Time-DelayedBackwardStochasticDifferentialEquations . . . . 253 14.2 ReflectedBackwardStochasticDifferentialEquations . . . . . . . 260 14.3 ConstrainedBackwardStochasticDifferentialEquations . . . . . . 268 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Chapter 1 Introduction Abstract Wediscussadvantagesofsolvingoptimalcontrolproblemsanddefining nonlinearexpectationsbybackwardstochasticdifferentialequations.Wecomment onapplicationsofbackwardstochasticdifferentialequationstopricingandhedging ofliabilitiesandmodellingofdynamicriskmeasures. A backward stochastic differential equation (BSDE) with jumps is an equation of theform (cid:2) T (cid:3) (cid:4) Y(t)=ξ + f s,Y(s),Z(s),U(s,.) ds t (cid:2) (cid:2) (cid:2) T T − Z(s)dW(s)− U(s,z)N˜(ds,dz), 0≤t≤T, (1.1) t t R ˜ where W is a Brownian motion and N is a compensated random measure. Given a terminal condition ξ and a generator f, we are interested in finding a triple (Y,Z,U) which solves (1.1). More precisely, we aim to find an adapted process Y :=(Y(t),0≤t≤T)whichismodelledbythedynamics (cid:2) (cid:3) (cid:4) dY(t)=−f t,Y(t),Z(t),U(t,.) dt+Z(t)dW(t)+ U(t,z)N˜(dt,dz), (1.2) R and satisfies Y(T)=ξ where ξ is an F -measurable random variable. At first T sight it seems to be a hopeless task to construct such a process. However, the dy- namics (1.2) is driven by two predictable processes Z :=(Z(t),0≤t ≤T) and U :=(U(t,z),0≤t ≤T,z∈R)whichareallowedtobechosenasthepartofthe solution to the BSDE (1.1). The processes Z and U are called control processes. TheycontroltheprocessY sothatY satisfiestheterminalcondition. It should be pointed out that we would not be able to find an adapted solution to an equation with a random terminal condition if we did not introduce control processes.Letusconsidertheequation dY(t)=0, Y(T)=ξ, (1.3) Ł.Delong,BackwardStochasticDifferentialEquationswithJumpsandTheirActuarial 1 andFinancialApplications,EAASeries,DOI10.1007/978-1-4471-5331-3_1, ©Springer-VerlagLondon2013
Description: