B-Spline-Based Monotone Multigrid Methods Markus Holtz, Angela Kunoth no. 252 Diese Arbeit ist mit Unterstützung des von der Deutschen Forschungs- gemeinschaft getragenen Sonderforschungsbereiches 611 an der Univer- sität Bonn entstanden und als Manuskript vervielfältigt worden. Bonn, Dezember 2005 B{SPLINE{BASED MONOTONE MULTIGRID METHODS(cid:3) MARKUS HOLTZ AND ANGELA KUNOTHy Abstract. Forthee(cid:14)cientnumericalsolutionofellipticvariationalinequalitiesonclosedconvex sets,multigridmethodsbasedonpiecewiselinear(cid:12)niteelementshavebeeninvestigatedoverthepast decades. Essentialfortheirsuccessistheappropriateapproximationoftheconstraintsetoncoarser gridswhichisbasedonfunctionvaluesforpiecewiselinear(cid:12)niteelements. Ontheotherhand,there are a number of problems which pro(cid:12)t from higher order approximations. Among these are the problem of prizing American options, formulated as a parabolic boundary value problem involving Black{Scholes’ equation with a free boundary. In addition to computing the free boundary, the optimal exercise prize of the option, of particular importance are accurate pointwise derivatives of thevalueofthestockoptionuptoordertwo,theso{calledGreekletters. Inthispaper,weproposeamonotonemultigridmethodfordiscretizationsintermsofB{splines ofarbitraryordertosolveellipticvariationalinequalitiesonaclosedconvexset. Inordertomaintain monotonicity (upper bound) and quasi{optimality (lower bound) ofthe coarse gridcorrections, we proposeanoptimizedcoarsegridcorrection(OCGC)algorithmwhichisbasedonB{splineexpansion coe(cid:14)cients. WeprovethattheOCGCalgorithmisofoptimalcomplexityofthedegreesoffreedomof thecoarsegridand,therefore,theresultingmonotonemultigridmethodisofasymptoticallyoptimal multigridcomplexity. Finally, the method is applied to a standard model for the valuation of American options. In particular,itisshownthat adiscretization based onB{splinesoforderfourenables ustocompute thesecondderivativeofthevalueofthestockoptiontohighprecision. Keywords. Variationalinequality,linearcomplementaryproblem,monotonemultigridmethod, cardinalhigherorderB{spline,systemoflinearinequalities,optimizedcoarsegridcorrection(OCGC) algorithm,optimalcomplexity,convergence rates,Americanoption,Greekletters,highprecision. AMS subject classi(cid:12)cations. 65M55,35J85,65N30,65D07. 1. Introduction. The motivation for this paper stems from an application in Mathematical Finance, the fair prizing of American options. In a standard model, this problem can be formulated as a parabolic boundary value problem involving Black{Scholes’equation[BS]with afreeboundary. Inadditiontocomputingthe free boundary(theoptimalexerciseprizeoftheoption),pointwisehigherorderderivatives of the solution (the value of the stock option) are particularly important. These so{ calledGreeklettersareneededwithhighprecisionastheyplayacrucialroleashedge parameters in the analysis of market risks. Thus, a discretization in terms of higher order basis functions is preferable. Ontheotherhand,forthefastnumericalsolutionoftheresulting(semi{discrete) ellipticvariationalinequality,themethodofchoiceisthemonotonemultigridmethod developed in [Ko1, Ko2]. Multigrid methods have been proposed previously for such problems using second order discretizations (i.e., standard (cid:12)nite di(cid:11)erence stencils or piecewise linear (cid:12)nite elements) in di(cid:11)erent variants [BC, HM, Ho, Ma] where, however,notallof themhaveassuredconsequentlythat the obstaclecriterionismet. Usingpiecewiselinear(cid:12)niteelementansatzfunctions,geometricconsiderationsbased on point values are used in [Ko1] to represent the problem{inherent obstacles on coarsergridsin suchawaythat aviolationof the obstacleisexcluded. The di(cid:14)culty tocorrectlyidentifyingcoarsegridapproximationshasalsobeen the motivationfora (cid:3) Thisworkhasbeen supportedinpartbytheDeutsche Forschungsgemeinschaft SFB611,Uni- versita(cid:127)tBonn. yInstitut fu(cid:127)r Numerische Simulation, Universita(cid:127)t Bonn, Wegelerstr. 6, 53115 Bonn, Germany, fholtz,[email protected], www.ins.uni-bonn.de/(cid:24)kunoth. 1 2 MarkusHoltzandAngelaKunoth cascadic multigrid algorithm for variationalinequalities in [BBS] for which, however, no convergencetheory is yet available. In this paper, we generalize the monotone multigrid (MMG) method from [Ko1, Ko2] to discretizations involving higher order B{splines. One of the key ingredients of an MMG method are restrictions of the obstacle to coarsergrids which satisfy the (upper) bound imposed by the obstacle (monotonicity) as well as a lower one which corresponds to the condition of quasi{optimality in [Ko1]. We formulate the con- struction of coarse grid approximationsas a linear constrained optimization problem with respect to the B{spline expansion coe(cid:14)cients. Our construction heavily pro(cid:12)ts from properties of B{splines [Bo, Sb]. In particular, we present with our optimized coarsegridcorrection(OCGC)algorithmamethodtoconstructmonotoneandquasi{ optimal coarsegrid approximationsto the obstaclefunction in optimal complexity of the coarse grid for B{spline basis functions of any degree. Building the OCGC scheme into the MMG method, our higher-order MMG method is shown to be of optimal multigrid complexity. Moreover, following the argumentsin[Ko1],wecanprovethatourmethodisgloballyconvergentandreduces asymptotically to a linear subspace correction method once the contact set has been identi(cid:12)ed [HzK]. Hence, we can expect particular robustness of the scheme and full multigrid e(cid:14)ciency in the asymptotic range in the numerical experiments. This is con(cid:12)rmedbycomputationsforanAmericanoptionpricingproblemin terms of cubic B{splines. Details about the derivation of the problem of fair prizing American op- tionsandits formulationasafreeboundaryvalueproblem andcorrespondingresults can be found in [WHD, Hz2]. Of course, once higher-oder MMG methods are avail- able, they may be applied to other obstacle problems like Signorini’s problem which has been solved using piecewise linear hat functions in [Kr]. Thispaperisstructuredasfollows. InSection2weintroducemonotonemultigrid methods (MMG), recollect the main features of B{splines and specify a B{spline{ based projected Gauss{Seidel relaxation as smoothing component of the scheme. In Section3thecrucialingredientsofthehigher-orderMMGschemes,suitablerestriction operators for the obstacle function, are presented for B{spline functions of arbitrary degreein the univariatecase. Theirconstructionforhigherspatialdimensionsis pre- sentedinSection4usingtensorproducts. InSection5someshortremarksconcerning the convergence theory for B{spline{based monotone multigrid schemes are made. Finally, in Section 6 we present a numerical example of prizing American options. Theconvergencebehaviorofthe projectedGauss{Seidelandthe multigridschemesis compared for basis functions of di(cid:11)erent orders. We conclude with an estimation of asymptotic multigrid convergencerates which exhibit full multigrid e(cid:14)ciency for the truncated version. 2. Monotone Multigrid Methods. 2.1. Elliptic Variational Inequalities and Linear Complementary Prob- lems. Let (cid:10) be a domain in Rd and J(v) := 1a(v;v) (cid:0) f(v) a quadratic func- 2 tional induced by a continuous, symmetric and H1{ elliptic bilinear form a((cid:1);(cid:1)) : 0 H1((cid:10))(cid:2)H1((cid:10))!R and a linear functional f :H1((cid:10))!R. As usual, H1((cid:10)) is the 0 0 0 0 subspace of functions belonging to the Sobolev space H1((cid:10)) with zero trace on the boundary. We consider the constrained minimization problem (cid:12)nd u2K: J(u)(cid:20)J(v) for all v 2K (2.1) B{Spline{BasedMonotoneMultigridMethods 3 on the closed and convex set K:=fv 2H1((cid:10)): v(x)(cid:20)g(x) for all x2(cid:10)g(cid:26)H1((cid:10)): 0 0 The function g 2 H1((cid:10)) represents an upper obstacle for the solution u 2 H1((cid:10)). 0 0 Lower obstacles can be treated in the obvious analogous way. If g satis(cid:12)es g(x) (cid:21) 0 for all x 2 @(cid:10), problem (2.1) admits a unique solution u 2 K by the Lax{Milgram theorem. It is well{knownthat (2.1)can be rewritten as a variationalinequality, see, e.g., [EO, KS]: (cid:12)nd u2K: a(u;v(cid:0)u)(cid:21)f(v(cid:0)u) for all v 2K or, equivalently, as a linear complementary problem Lu (cid:21) f; u (cid:20) g; (2.2) (u(cid:0)g)(Lu(cid:0)f) = 0 almost everywhere in (cid:10). Here L : H1((cid:10)) ! H(cid:0)1(= (H1((cid:10)))0) is the Riesz operator 0 0 de(cid:12)ned by hLu;vi:=a(u;v) for all v 2H1((cid:10)). 0 Discretizingin a(cid:12)nite dimensionalsplinespaceS of piecewise polynomialsona L grid (cid:1) with uniform grid spacing h leads to the discrete formulation of (2.1), L L (cid:12)nd u 2K : J(u )(cid:20)J(v ) for all v 2K (2.3) L L L L L L on the closed and convex set K :=fv 2 S : v (x) (cid:20)g (x) for all x 2 (cid:10)g(cid:26)S ; L L L L L L or, equivalently, L u (cid:21) f ; L L L u (cid:20) g ; (2.4) L L (u (cid:0)g )(L u (cid:0)f ) = 0: L L L L L In[BHR]regularityu2H5=2(cid:0)(cid:15)((cid:10))ofthesolutionuto(2.2)isshownforarbitrary (cid:15) > 0. Moreover, error estimates ku(cid:0)u k = O(h ) and ku(cid:0)u k = L H1((cid:10)) L L H1((cid:10)) O(h3=2(cid:0)(cid:15))areprovedinthe caseof piecewiselinear,respectivelypiecewise quadratic, L functions, provided the functions f;g are su(cid:14)ciently regular. 2.2. The MMG{algorithm. For solving (2.3) numerically, a by now popular methodisthemonotonemultigridmethod(MMG)[Ko1]. Byaddingaprojectionstep and employing speci(cid:12)c restriction operators, it can be implemented as a variant of a standardmultigridscheme. LetS (cid:26)S (cid:26):::(cid:26)S (cid:26)H1((cid:10))beanestedsequenceof 1 2 L 0 (cid:12)nite{dimensionalspaces,andletu(cid:23) 2S betheapproximationinthe(cid:23){thiteration L L of the MMG method. The basic multigrid idea is that the error v := u (cid:0)u(cid:23);1 L L L between the smoothed iterate u(cid:23);1 := S(u(cid:23)) (S always being the standard Gauss{ L L Seideliteration)andtheexactsolutionu canbeapproximatedwithoutessentialloss L of information on a coarsergrid (cid:1) . We explain how this is realized in the case of L(cid:0)1 a linear complementary problem for two grids (cid:1) and (cid:1) . Introducing the defect L L(cid:0)1 d :=f (cid:0)L u(cid:23);1, (2.4) can be written as L L L L L v (cid:21) d ; L L L v (cid:20) g (cid:0)u(cid:23);1; (2.5) L L L (v (cid:0)g +u(cid:23);1)(L v (cid:0)d ) = 0: L L L L L L 4 MarkusHoltzandAngelaKunoth On a coarsergrid (cid:1) the defect problem can now be approximated by L(cid:0)1 L v (cid:21) d ; L(cid:0)1 L(cid:0)1 L(cid:0)1 v (cid:20) g ; L(cid:0)1 L(cid:0)1 (v (cid:0)g )(L v (cid:0)d ) = 0; L(cid:0)1 L(cid:0)1 L(cid:0)1 L(cid:0)1 L(cid:0)1 where d := rd and g := r~(g (cid:0)u(cid:23);1) with (di(cid:11)erent) restriction operators L(cid:0)1 L L(cid:0)1 L L r;r~ : S ! S . The solution v of the coarse grid problem is then used as L L(cid:0)1 L(cid:0)1 an approximation to the error v . It is (cid:12)rst transported back to the (cid:12)ne grid by a L prolongationoperatorpand isthen addedto the approximationu(cid:23);1. It isimportant L that the restriction r~is chosen such that the new iterate satis(cid:12)es the constraint u(cid:23);2 :=u(cid:23);1+pv (cid:20)g (2.6) L L L(cid:0)1 L on the (cid:12)ne grid. Applying this idea recursivelyon severaldi(cid:11)erent grids,one obtains the monotone multigrid method (MMG) for linear complementary problems. Algorithm 2.1. MMG ((cid:23){ th cycle on level ‘(cid:21)1) ‘ Let u(cid:23) 2S be a given approximation. ‘ ‘ 1. A priori smoothing and projection : u(cid:23);1 :=(P(cid:14)S(u(cid:23)))(cid:17)1. ‘ ‘ 2. Coarse grid correction: d :=r(f (cid:0)L u(cid:23);1), ‘(cid:0)1 ‘ ‘ ‘ g :=r~(g (cid:0)u(cid:23);1), ‘(cid:0)1 ‘ ‘ L :=rL p. ‘(cid:0)1 ‘ If ‘=1, solve exactly the linear complementary problem L v (cid:21) d ; ‘(cid:0)1 ‘(cid:0)1 v (cid:20) g ; ‘(cid:0)1 (v(cid:0)g )(L v(cid:0)d ) = 0 ‘(cid:0)1 ‘(cid:0)1 ‘(cid:0)1 and set v :=v. ‘(cid:0)1 If ‘>1, do (cid:13) steps of MMG with initial value u0 :=0 and solution v . ‘(cid:0)1 ‘(cid:0)1 ‘(cid:0)1 Set u(cid:23);2 :=u(cid:23);1+pv . ‘ ‘ ‘(cid:0)1 3. A posteriori smoothing and projection : u(cid:23);3 :=(P(cid:14)S(u(cid:23);2))(cid:17)2: ‘ ‘ Set u(cid:23)+1 :=u(cid:23);3: ‘ ‘ The number of a priori and a posteriori smoothing steps is denoted by (cid:17) and (cid:17) , 1 2 respectively. For (cid:13) = 1 one obtains a V{cycle, for (cid:13) = 2 a W{cycle. P denotes a projection operator de(cid:12)ned in (2.7) and (2.11) below. Condition(2.6)leadstoaninnerapproximationofthesolutionsetK andensures L that the multigrid scheme is robust [Ko1]. Striving for optimal multigrid e(cid:14)ciency, satisfaction of the constraint should not be checked by interpolating v back to the ‘ (cid:12)nestgrid. Instead,specialrestrictionoperatorsr~areneededfortheobstaclefunction. A corresponding construction for B{splines of general order k will be introduced in Sections 3 and 4. Next we discuss the projection step for general order B{splines. 2.3. A B{Spline{Based Projected Gauss{Seidel Scheme. Since the op- erator L is symmetric positive de(cid:12)nite and continuous piecewise linear functions are used for discretization,the discrete form (2.4) canbe solvedbythe projected Gauss{ Seidel scheme, see, e.g., [Cr]. Given an iterate u(cid:23), a standard Gauss{Seidel sweep L u(cid:22)(cid:23) :=S(u(cid:23))issupplemented byaprojectionu(cid:23)+1 =Pu(cid:22)(cid:23) intothe convexsetK . If L L L L L B{Spline{BasedMonotoneMultigridMethods 5 S consists of hat functions, the projection can be de(cid:12)ned for given grid points f(cid:18) g L i i by Pv ((cid:18) ):=minfv ((cid:18) ); g ((cid:18) )g: (2.7) L i L i L i Forhigher{orderfunctions v , the di(cid:14)cultyarisesalreadyinthe univariatecasethat L for given x2[(cid:18) ;(cid:18) ] the estimate i i+1 minfv ((cid:18) );v ((cid:18) )g(cid:20)v (x)(cid:20)maxfv ((cid:18) );v ((cid:18) )g (2.8) L i L i+1 L L i L i+1 is not valid any more. Thus, controlling function values on grid points is not a su(cid:14)cient criterion in this case. We propose here instead a construction using higher order B{splines, which compares B{spline expansion coe(cid:14)cients instead of function values and heavily pro(cid:12)ts from the fact that B{splines are nonnegative. We begin with the univariate case. For readers’ convenience, we recall the relevant facts about B{spline bases from [Bo]. Definition 2.2 (B{Spline Basis Functions). For k 2 N and n 2 N let T := f(cid:18) g be an expanded knot sequence with uniform grid spacing h in the i i=1;:::;n+k L interior of the interval I :=[a;b] of the form (cid:18) =:::=(cid:18) =a<(cid:18) <:::<(cid:18) <b=(cid:18) =:::=(cid:18) : (2.9) 1 k k+1 n n+1 n+k Then the B{spline basis functions N of order k are recursively de(cid:12)ned for i = i;k 1;:::;n by 1; if x2[(cid:18) ;(cid:18) ) N (x)= i i+1 ; i;1 0; else (cid:26) (2.10) x(cid:0)(cid:18) (cid:18) (cid:0)x i i+k N (x)= N (x)+ N (x) i;k i;k(cid:0)1 i+1;k(cid:0)1 (cid:18) (cid:0)(cid:18) (cid:18) (cid:0)(cid:18) i+k(cid:0)1 i i+k i+1 for x2I. It is known that suppN (cid:18) [(cid:18) ; (cid:18) ] (local support), N (x) (cid:21) 0 for all x 2 I i;k i i+k i;k (nonnegativity) and N 2Ck(cid:0)2(I) (di(cid:11)erentiability) holds. Moreoverthe set (cid:6) := i;k L fN ;:::;N g constitutes a locally independent and unconditionally stable basis 1;k n;k with respect to k(cid:1)k , 1 (cid:20) p (cid:20) 1, for the (cid:12)nite dimensional space S = N := Lp L k;T span(cid:6) of the splines of order k. L Lemma 2.3. If the B{spline coe(cid:14)cients of v ;g 2N =S satisfy v (cid:20)g for L L k;T L i i all i=1;:::;n, then v (x)(cid:20)g (x) holds for all x2I. L L Proof. Usingtherepresentationv = n v N andg = n g N andthe L i=1 i i;k L i=1 i i;k nonnegativity N (x) (cid:21) 0 for all x 2 I, we deduce that g (x)(cid:0)v (x) = n (g (cid:0) i;k P L PL i=1 i v )N (x)(cid:21)0 for all x2I: i i;k P Here and below in Section 5, we use the subscript i in v = (v ) to denote i L i B{spline expansion coe(cid:14)cients. Theprojectioncannowbede(cid:12)nedforB{splinefunctionsofgeneralorderksimilar to (2.7) but now involving expansion coe(cid:14)cients by setting Pv :=minfv ; g g: (2.11) i i i Usingthesameargumentsasin[Cr],theresultingprojectedGauss{Seidelschemestill convergessincethediscretesolutionsetfv2IRn : v (cid:20)g fori=1;:::;ngdescribesa i i cuboidinIRn. Moreover,iftheproblemisnon{degenerate,thecontactset,de(cid:12)nedby 6 MarkusHoltzandAngelaKunoth allcoe(cid:14)cientsforwhichequalityholds,isidenti(cid:12)edaftera(cid:12)nitenumberofiterations [Cr, EO]. We treat the multivariate case by takingtensor products. Specifying the domain (cid:10) as (cid:10):= d [a ;b ](cid:26)Rd, the i-th d-dimensional tensor product B{spline of order ‘=1 ‘ ‘ k on a tensorized extended knot sequence T(d) is de(cid:12)ned by Q d N(d)(x):= N (x ); x2(cid:10); (2.12) i;k i‘;k ‘ ‘=1 Y wherei:=(i ;:::;i )denotesamulti-index. De(cid:12)ningS inanalogytotheunivariate 1 d L case, the result of Lemma 2.3 immediately carriesover to the d-dimensional setting. 3. Constructionof Monotoneand Quasi{optimalObstacle Approxima- tions. In this section, the second essential ingredient for our B{spline{based mono- tonemultigridmethodsisprovided,theconstructionofso{calledmonotoneandquasi{ optimal coarse grid approximations of the obstacle function, which lead to suitable restriction operators r~. We begin with the univariate case; the extension to d di- mensions follows in Section 4. We consider in the following only two grids, as the generalization to several grids is obvious. Given an obstacle function S~ which is de- (cid:12)ned on a (cid:12)ne grid (cid:1)(cid:26)I, we provide an approximation S with respect to a coarser grid T which satis(cid:12)es 1. S(x)(cid:20)S~(x) for all x2I; 2. S(x) (cid:21) L (x) for all x 2 I and a still to be speci(cid:12)ed lower barrier L (x) k k provided below in Section 3.2; 3. S (cid:25)S~ with respect to a target functional F de(cid:12)ned below in (3.10). k The (cid:12)rst condition ensuresthe monotonicity androbustnessof the multigridscheme, thesecondanasymptoticalreductionofthemethodtoalinearrelaxationandthethird an e(cid:14)cient coarsegrid correction. As the construction is used as a component of the monotonemultigridscheme,strivingforoptimalcomputationalmultigridcomplexity, it also has to satisfy 4. the number of arithmetic operations must be of order O(n) where n denotes the number of degrees of freedom on the coarse grid. Speci(cid:12)cally, let T be an extended knot sequence with grid spacing H as in (2.9) and let (cid:1):=f(cid:18)~g be a (cid:12)ner knot sequence i i=1;:::;n~+k (cid:18)~ =:::=(cid:18)~ =a<(cid:18)~ <:::<(cid:18)~ <b=(cid:18)~ =:::=(cid:18)~ (3.1) 1 k k+1 n~ n~+1 n~+k with grid spacing h= 1H. It is de(cid:12)ned such that (cid:18) =(cid:18)~ for i=k;:::;n+1 and 2 i 2i(cid:0)k 1((cid:18) +(cid:18) )=(cid:18)~ for i=k+1;:::;n+1. Then it holds 2 i(cid:0)1 i 2i(cid:0)k(cid:0)1 n~ =2n+1(cid:0)k: (3.2) The corresponding spline spaces are N and N with member functions N k;(cid:1) k;T i;k;(cid:1) andN ,respectively. Letnowthe obstaclefunction onthe (cid:12)negrid S~2N and i;k;T k;(cid:1) its approximationS 2N be expanded as k;T n~ n S~= c~ N =:~cT N ; S = c N =:cT N : (3.3) i i;k;(cid:1) k;(cid:1) i i;k;T k;T i=1 i=1 X X There is a natural prolongation operator p from N to N for B{splines N in k;T k;(cid:1) i;k;T terms of their re(cid:12)nement or mask coe(cid:14)cients [Bo, Sb]. In the special case H = 2h B{Spline{BasedMonotoneMultigridMethods 7 considered here the re(cid:12)nement relation is given by k N = a N (3.4) i;k;T j 2i(cid:0)k+j;k;(cid:1) j=0 X with the subdivision or mask coe(cid:14)cients k a :=21(cid:0)k for j =0;:::; k: (3.5) j j (cid:18) (cid:19) In Step 2 of Algorithm 2.1, we choose the restriction r as the adjoint of p, following [Ha]. However, for the obstacle function the restriction operator r cannot be used since it does not satisfy condition (2.6). 3.1. Monotone Coarse Grid Approximations. There is a vast amount of literature, see, e.g., [DV, Mv, Pi] especially from approximation theory, dealing with monotone approximations to a given function g. The function g^ is a monotone (or one{sided) lower approximation to g if g^(x) (cid:20) g(x) for all x 2 I. There the number n of degrees of freedom of the function g^ is chosen such that a given approximation accuracy can be reached. In contrast to these studies, the question here is di(cid:11)erent, since the number n of degrees of freedom is given by the mesh size H. Definition 3.1 (Monotone CoarseGrid Approximation). For knot sequences T and (cid:1) from (2.9) and (3.1), respectively, we call S 2 N a monotone lower coarse k;T grid approximation to S~2N if S(x)(cid:20)S~(x) holds for all x2I. k;(cid:1) For hat functions such approximations are constructed in [Ma, Ko1]. A cor- responding construction for higher{order functions has to our knowledge not been providedsofar. In viewof Lemma2.3weproposeheretocontrolB{splineexpansion coe(cid:14)cients. Theorem 3.2 (Monotone Coarse Grid Approximation). Let S~ 2 N be an k;(cid:1) upper obstacle with S~ = ~cT N for a given order k and the knot sequence (cid:1) from k;(cid:1) (3.1). Then S 2 N with S = cT N de(cid:12)ned on the knot sequence T from (2.9) k;T k;T is a monotone lower coarse grid approximation to S~ if the inequality system A c(cid:20)~c (3.6) k is satis(cid:12)ed. The two{slanted matrix A is de(cid:12)ned by k a a 0 ak(cid:0)1 ak(cid:0)3 ... 1 k k(cid:0)2 BB ak(cid:0)1 a0 CC B C BB ak a1 CC B .. C B . a C Ak :=BBB ...2 CCC2Rn~(cid:2)n BBB a ... CCC B k(cid:0)1 C B a C B k C BB ... a CC B 0 C B C @ a1 A with the subdivision coe(cid:14)cients a from (3.5) and has maximal rank. j 8 MarkusHoltzandAngelaKunoth Proof. The proof relies on the subdivision property (3.4) and on the nonnega- tivity of B{splines. We only consider the case k even as the other case is analogous. Substituting (3.4) into (3.3) and sortingaccordingto the basisfunctions N leads i;k;(cid:1) to n~ S(x) = a c +a c +:::+a c N (x) k(cid:0)1 (i+1)=2 k(cid:0)3 (i+3)=2 1 (i+k(cid:0)1)=2 i;k;(cid:1) i=1 iXodd(cid:0) (cid:1) n~(cid:0)1 + a c +a c +:::+a c N (x); k i=2 k(cid:0)2 (i+2)=2 0 (i+k)=2 i;k;(cid:1) i=2 iXeven(cid:0) (cid:1) where all c with j <1 or j >n are treated as zero. De(cid:12)ning the coe(cid:14)cients j c~ (cid:0) a c +a c +:::+a c ; if i is odd; i k(cid:0)1 (i+1)=2 k(cid:0)3 (i+3)=2 1 (i+k(cid:0)1)=2 d := i ( c~i(cid:0)(cid:0)akci=2+ak(cid:0)2c(i+2)=2+:::+a0c(i+k)=2 ; (cid:1) if i is even; which can be wr(cid:0)itten in compact matrix/vectorform as (cid:1) d =c~ (cid:0)(A c) (3.7) i i k i (involving the ith component of the vector A c), we obtain k n~ S~(x)(cid:0)S(x)= d N (x): (3.8) i i;k;(cid:1) i=1 X By Lemma 2.3 we have S~(x)(cid:0)S(x) (cid:21) 0 for all x 2 I, provided d (cid:21) 0 holds for all i i=1;:::;n~. By(3.7),weobtaintheinequalitysystem(3.6). SincetheB-splinesform bases for N and N , the matrix A has full rank for each k. k;T k;(cid:1) k Example 3.3. In the special case of continuous, piecewise linear functions (k =2), C1{smooth, piecewise quadratic (k =3) and C2{smooth, piecewise cubic (k =4) splines one has 1 3 1 0 1 1 1 0 1 3 1 2 2 A2 =BBBBBBBBBBBBBB .112.. 12 11212 21CCCCCCCCCCCCCC2R(2n(cid:0)1)(cid:2)n; A3 = 14BBBBBBBBBBBBB 31...13 31...133 1 CCCCCCCCCCCCC2R(2n(cid:0)2)(cid:2)n; @ 1A @ 1 3 A 4 4 0 1 6 1 1 B 4 4 C B C B 1 6 1 C A4 = 81BBBB ... ... CCCC2R(2n(cid:0)3)(cid:2)n: B 1 6 1 C B C B 4 4 C B C B 1 6 1 C B C @ 4 4 A B{Spline{BasedMonotoneMultigridMethods 9 3.2. Quasi{optimal Coarse Grid Approximations. Now we can immedi- ately derive a monotone lower coarse approximation. Proposition 3.4. The spline L :=qT N 2N with coe(cid:14)cients k k;T k;T q :=minfc~ ; :::; c~ g for i=1;:::;n (3.9) i 2i(cid:0)k 2i (leaving out c~ in the right hand side if j < 1 or j > n~) is a monotone lower coarse j grid approximation to S~=~cT N 2N . k;(cid:1) k;(cid:1) Proof. AsallrowsumsofA areequaltoone,thevectorq:=(q ;:::;q )T de(cid:12)ned k 1 n in(3.9)obviouslysatis(cid:12)estheinequalitysystemA q(cid:20)~csothattheassertiondirectly k follows from Theorem 3.2. Remark3.5. Inthespecialcasek =2,therestrictionoperatorr^: N !N , 2;(cid:1) 2;T S~7!L inducedby Proposition 3.4 coincides with therestrictionoperator from [Ma]. 2 As it is illustrated in Figure 3.1 and 3.2 for the cases k = 2 and k = 3, the approximationL canbefurther improvedin manycases. Thiswill bethe subjectof k the next subsections: there q is interpreted as a componentwise lower barrier for the B{spline coe(cid:14)cients c of the desired coarse grid approximation. Definition 3.6 (Quasi{optimalCoarseGrid Approximation). We call a mono- tone lower coarse grid approximation S =cT N to the spline S~=~cT N quasi{ k;T k;(cid:1) optimal if it is an improvement over L in the sense that c(cid:21)q holds with q de(cid:12)ned k in (3.9). 3.3. A Linear Optimization Problem. Aiming at improving the coarse grid approximation L from Proposition 3.4, we de(cid:12)ne an optimal monotone and quasi{ k optimalcoarsegridapproximationS =cT N toagiven S~=~cT N byformulat- k;T k;(cid:1) ing a linear optimization problem. We choose a target functional F which estimates k thesumofthedistancesfromapproximationtoobstacleonallcoarsegridpoints,i.e., F (c):= jS~((cid:18))(cid:0)S((cid:18))j: (3.10) k (cid:18)2T X Lemma 3.7. The function F de(cid:12)ned in (3.10) is a linear function Rn ! R of k the form F (c)=(cid:24)Tc+(cid:17) (3.11) k where (cid:24) :=(cid:0)ATs 2Rn; s :=((cid:12) ;(cid:13) ;(cid:12) ;:::)T 2Rn~ and (cid:17) :=sT~c2R: (3.12) k k k k k k k The values (cid:12) and (cid:13) can be computed explicitly: for odd k we have (cid:12) =(cid:13) = 1, and k k k k 2 for even k=2;4;6;8 the values are displayed in Table 3.1. k 2 4 6 8 (cid:12) 1 2 17 166 k 3 30 315 (cid:13) 0 1 13 149 k 3 30 315 Table 3.1 The values (cid:12)k and (cid:13)k fororders k=2;4;6;8.
Description: