ebook img

B, D and K decays PDF

6.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview B, D and K decays

B, D and K decays ∗ Conveners: G.Buchalla,T.K.Komatsubara, F.Muheim,L.Silvestrini Sectioncoordinators: Newphysicsscenarios: A.J.Buras,S.Heinemeyer, G.Isidori, Y.Okada, F.Parodi,L.Silvestrini WeakdecaysofhadronsandQCD:G.Buchalla Radiativepenguin decays: P.Gambino,A.Golutvin Electroweakpenguin decays: J.Berryhill, Th.Feldmann 8 Neutrinomodes: Y.Grossman,T.Iijima 0 0 Veryraredecays: U.Nierste, M.Smizanska 2 UTanglesfromtreedecays: M.Bona,A.Soni, K.Trabelsi,G.Wilkinson n B-mesonmixing: V.Lubicz,J.vanHunen a Hadronicb sandb dtransitions: M.Ciuchini,F.Muheim J → → Kaondecays: A.J.Buras,T.K.Komatsubara 1 1 Charmphysics: D.M.Asner,S.Fajfer Prospectsforfuturefacilities: T.Hurth ] h Assessments: S.Heinemeyer, F.Parodi,L.Silvestrini p Contributingauthors: - p M.Artuso1,D.M.Asner2,P.Ball3,E.Baracchini4,G.Bell5,M.Beneke6,J.Berryhill7,A.Bevan8, e I.I.Bigi9,M.Blanke10,Ch.Bobeth11,M.Bona12,F.Borzumati13,T.Browder14,T.Buanes15, h [ G.Buchalla16,O.Buchmu¨ller17,A.J.Buras18,S.Burdin19,D.G.Cassel20,R.Cavanaugh21, M.Ciuchini22,P.Colangelo23,G.Crosetti24,A.Dedes3,F.DeFazio23,S.Descotes-Genon25, 1 v J.Dickens26,Z.Dolezˇal27,S.Du¨rr28,U.Egede29,C.Eggel30,G.Eigen15,S.Fajfer31,Th.Feldmann32, 3 R.Ferrandes23,P.Gambino33,T.Gershon34,V.Gibson26,M.Giorgi35,V.V.Gligorov36,B.Golob37, 3 A.Golutvin38,Y.Grossman39,D.Guadagnoli18,U.Haisch40,M.Hazumi41,S.Heinemeyer42, 8 1 G.Hiller11,D.Hitlin43,T.Huber6,T.Hurth44,T.Iijima45,A.Ishikawa46,G.Isidori47,S.Ja¨ger17, 1. A.Khodjamirian32,T.K.Komatsubara41,P.Koppenburg29,T.Lagouri27,U.Langenegger48, 0 C.Lazzeroni26,A.Lenz49,V.Lubicz22,W.Lucha50,H.Mahlke20,D.Melikhov51,F.Mescia52, 8 M.Misiak53,F.Muheim54,M.Nakao41,J.Napolitano55,N.Nikitin56 U.Nierste5,K.Oide41, 0 : Y.Okada41,P.Paradisi18,F.Parodi57,M.Patel17,A.A.Petrov58,T.N.Pham59,M.Pierini17, v S.Playfer54,G.Polesello60,A.Policicchio24 A.Poschenrieder18,P.Raimondi52,S.Recksiegel18, i X P.Rˇezn´ıcˇek27,A.Robert61,S.Robertson62,J.L.Rosner63,G.Ruggiero17,A.Sarti52,O.Schneider64, ar F.Schwab65,L.Silvestrini4,S.Simula22,S.Sivoklokov56,P.Slavich66,C.Smith67,M.Smizanska68, A.Soni69,T.Speer40,P.Spradlin36,M.Spranger18,A.Starodumov48,B.Stech70,A.Stocchi71, S.Stone1,C.Tarantino22,F.Teubert17,S.T’Jampens12,K.Toms56,K.Trabelsi41,S.Trine5,S.Uhlig18, V.Vagnoni72,J.J.vanHunen64,G.Weiglein3,A.Weiler20,G.Wilkinson36,Y.Xie54,M.Yamauchi41, G.Zhu73,J.Zupan31,R.Zwicky3. 1 Syracuse University, Syracuse, NY,USA 2 CarletonUniversity, Ottawa,Canada 3 DurhamUniversity, IPPP,Durham,UK 4 Universita` diRomaLaSapienza andINFN,Rome,Italy 5 Universita¨t Karlsruhe, Germany 6 RWTHAachen,Aachen,Germany 7 FermiNationalAccelerator Laboratory, Batavia,IL,USA 8 QueenMary,UniversityofLondon,UnitedKingdom 9 University ofNotreDame,NotreDame,IN,USA 10 TechnischeUniversita¨t Mu¨nchen,GarchingandMax-Planck-Institut fu¨rPhysik,Mu¨nchen,Germany ∗Report of WorkingGroup 2of theCERNWorkshop“FlavourintheeraoftheLHC”,Geneva, Switzerland, November 2005–March2007. 1 11 Institut fu¨rPhysik,Universita¨t Dortmund, Germany 12 LAPP,Universite´ deSavoie, IN2P3-CNRS,Annecy-le-Vieux, France 13 ICTP,Trieste,ItalyandNationalCentralUniversity, Taiwan 14 University ofHawaiiatManoa,Honolulu, HI,USA 15 University ofBergen,Norway 16 Ludwig-Maximilians-Universita¨t Mu¨nchen, Mu¨nchen,Germany 17 CERN,Geneva,Switzerland 18 TechnischeUniversita¨t Mu¨nchen,Garching, Germany 19 TheUniversityofLiverpool, Liverpool, UnitedKingdom 20 CornellUniversity, Ithaca, NY,USA 21 University ofFlorida, Gainesville, FL,USA 22 Universita` diRomaTreandINFN,Rome,Italy 23 INFNBari,Italy 24 Universita` diCalabriaandINFNCosenza,Italy 25 LPT,CNRS/Universite´ deParis-Sud 11,Orsay,France 26 University ofCambridge, Cambridge, UnitedKingdom 27 IPNP,CharlesUniversity inPrague,CzechRepublic 28 NIC,FZJu¨lichandDESYZeuthen,Ju¨lich,Germany 29 ImperialCollege, London,UnitedKingdom 30 ETH,Zu¨richandPSI,Villigen, Switzerland 31 Ljubljana UniversityandJozefStefanInstitute, Ljubljana, Slovenia 32 Universita¨t Siegen, Siegen, Germany 33 Universita` diTorinoandINFN,Torino,Italy 34 University ofWarwick,Coventry, UnitedKingdom 35 Universita` diPisa,SNSandINFN,Pisa,Italy 36 University ofOxford,Oxford,UnitedKingdom 37 University ofLjubljana, Slovenia 38 CERN,Geneva,Switzerland andITEP,Moscow,Russia 39 Technion, Haifa,Israel 40 Universita¨t Zu¨rich,Zu¨rich,Switzerland 41 KEKandGraduateUniversityforAdvancedStudies (Sokendai), Tsukuba, Japan 42 IFCA,Santander, Spain 43 CalTech,Pasadena, CA,USA 44 CERN,Geneva,Switzerland andSLAC,Stanford, CA,USA 45 NagoyaUniversity, Nagoya, Japan 46 SagaUniversity, Saga, Japan 47 SNSandINFN,PisaandINFN,LNF,Frascati,Italy 48 ETH,Zu¨rich,Switzerland 49 Universita¨t Regensburg, Regensburg, Germany 50 Institut fu¨rHochenergiephysik, O¨sterreichische AkademiederWissenschaften, Wien,Austria 51 Institut fu¨rHochenergiephysik, O¨sterreichische AkademiederWissenschaften, Wien,Austriaand NuclearPhysicsInstitute, MoscowStateUniversity, Moscow,Russia 52 INFN,LNF,Frascati,Italy 53 CERN,Geneva,Switzerland andWarsawUniversity, Warsaw,Poland 54 University ofEdinburgh, Edinburgh, UnitedKingdom 55 Rensselaer PolytechnicInstitute, Troy,NY,USA 56 Skobeltsin Institute ofNuclearPhysics,LomonosovMoscowStateUniversity, Russia 57 Universita` diGenovaandINFN,Genova,Italy 58 WayneStateUniversity, Detroit,MI,USA 59 EcolePolytechnique, CNRS,Palaiseau, France 2 60 Universita` diPaviaandINFN,Pavia,Italy 61 Universite´ deClermont-Ferrand, Clermont-Ferrand, France 62 McGillUniversityandIPP,Canada 63 EnricoFermiInstitute, University ofChicago, Chicago, IL,USA 64 EcolePolytechnique Fe´de´raledeLausanne (EPFL),Lausanne, Switzerland 65 Universitat AutonomadeBarcelona,IFAE,Barcelona, Spain 66 CERN,Geneva,Switzerland andLAPTH,Annecy-le-Vieux, France 67 Universita¨t Bern,Bern,Switzerland 68 Lancaster University, Lancaster, UnitedKingdom 69 Brookhaven NationalLaboratory, Upton,NY,USA 70 Universita¨t Heidelberg, Heidelberg, Germany 71 LAL,IN2P3-CNRSandUniversite´ deParis-Sud, Orsay,France 72 Universita` diBolognaandINFN,Bologna, Italy 73 Universita¨t Hamburg,Hamburg,Germany Abstract The present report documents the results of Working Group 2: B, D and K decays,oftheworkshoponFlavourintheEraoftheLHC,heldatCERNfrom November2005throughMarch2007. With the advent of the LHC, we will be able to probe New Physics (NP) up to energy scales almost one order of magnitude larger than it has been possi- ble with present accelerator facilities. While direct detection of new particles will be the main avenue to establish the presence of NP at the LHC, indirect searches will provide precious complementary information, since most prob- ably it will not be possible to measure the full spectrum of new particles and their couplings through direct production. In particular, precision measure- mentsandcomputations intherealmofflavourphysics areexpected toplaya keyroleinconstraining theunknownparameters oftheLagrangian ofanyNP modelemerging fromdirectsearches attheLHC. The aim of Working Group 2 was twofold: on one hand, to provide a coher- ent, up-to-date picture of the status of flavour physics before the start of the LHC; on the other hand, to initiate activities on the path towards integrating information onNPfromhigh-p andflavourdata. T This report is organized as follows. In Sec. 1, we give an overview of NP models, focusing on a few examples that have been discussed in some detail during the workshop, with a short description of the available computational tools for flavour observables in NP models. Sec. 2 contains a concise dis- cussion of the main theoretical problem in flavour physics: the evaluation of the relevant hadronic matrix elements for weak decays. Sec. 3 contains a de- taileddiscussionofNPeffectsinasetofflavourobservablesthatweidentified as “benchmark channels” for NP searches. The experimental prospects for flavour physics atfuture facilities are discussed in Sec.4. Finally, Sec. 5con- tains some assessments on the work done at the workshop and the prospects forfuturedevelopments. 4 Contents 1 Newphysicsscenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Model-independent approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 SUSYmodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Non-supersymmetric extensions oftheStandardModel . . . . . . . . . . . . . . . . . . 25 1.5 Toolsforflavourphysicsandbeyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 WeakdecaysofhadronsandQCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2 Charmlesstwo-bodyB decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 Light-cone QCDsumrules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4 LatticeQCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3 Newphysicsinbenchmark channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1 Radiativepenguin decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 Electroweakpenguin decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3 Neutrinomodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4 Veryraredecays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.5 UTanglesfromtreedecays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.6 B-mesonmixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.7 Hadronicb sandb dtransitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 → → 3.8 Kaondecays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 3.9 Charmphysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4 Prospectsforfuturefacilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 4.1 OnthephysicscaseofaSuperFlavourFactory . . . . . . . . . . . . . . . . . . . . . . 186 4.2 SuperB proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 4.3 Accelerator designofSuperKEKB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 4.4 LHCbupgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 5 Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 5.1 New-physicspatterns andcorrelations . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 5.2 Correlations betweenFCNCprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 5.3 Connection tohigh-energy physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 5.4 Discrimination betweennewphysicsscenarios . . . . . . . . . . . . . . . . . . . . . . . 240 5 1 New physics scenarios 1.1 Overview TheStandardModel(SM)ofelectroweak andstronginteractions describes withanimpressiveaccuracy all experimental data on particle physics up to energies of the order of the electroweak scale. On the other hand, weknow that the SMshould beviewed asan effective theory valid uptoascale Λ M , W ∼ since,amongmanyotherthings, theSMdoesnotcontainasuitablecandidate ofdarkmatteranditdoes notaccountforgravitational interactions. ViewingtheSMasaneffectivetheory,however,posesaseries oftheoretical questions. Firstofall, thequadratic sensitivity oftheelectroweak scale onthecutoff calls for a low value of Λ, in order to avoid excessive fine tuning. Second, several of the higher dimensional operators which appear in the SM effective Lagrangian violate the accidental symmetries of the SM. Therefore,theircoefficientsmustbehighlysuppressedinordernottoclashwiththeexperimentaldata,in particularintheflavoursector. Unlessadditionalsuppressionmechanismsarepresentinthefundamental theory,acutoffaroundtheelectroweakscaleisthusphenomenologicallynotacceptablesinceitgenerates higherdimensional operators withlargecoefficients. Wearefacing aformidable task: formulating anatural extension oftheSMwithacutoff close to the electroweak scale and with avery strong suppression of additional sources of flavour and CPviola- tion. While the simplest supersymmetric extensions of the SM with minimal flavour and CP violation, such asMinimalSupergravity (MSUGRA)models, seem tobethephenomenologically mostviable NP options,itisfairtosaythatafullyconsistentmodelofSUSYbreakinghasnotbeenputforwardyet. On the other hand, alternative solutions of the hierarchy problem based on extra dimensions have recently becomeverypopular,althoughtheyhavenotyetbeentestedatthesamelevelofaccuracyastheMinimal SupersymmetricStandardModel(MSSM).WaitingfortheLHCtodiscovernewparticlesandshedsome light on these fundamental problems, we should consider a range of NP models as wide as possible, in ordertobereadytointerprettheNPsignalsthatwillshowupinthenearfuture. In the following paragraphs, we discuss how flavour and CP violation beyond the SM can be analyzedongeneralgroundsinamodel-independentway. Wethenspecializetoafewpopularextensions oftheSM,suchasSUSYandlittleHiggsmodels,andpresent theirmostrelevantaspectsinviewofour subsequent discussion ofNPeffectsinflavourphysics. 6 1.2 Model-independentapproaches 1.2.1 Generalconsiderations Inmostextensions oftheStandard Model(SM),thenewdegrees offreedom that modifythe ultraviolet behavior of the theory appear only around or above the electroweak scale (v 174 GeV). As long as ≈ weareinterested inprocesses occurringbelowthisscale(suchasB,DandK decays),wecanintegrate outthenewdegreesoffreedomanddescribethenew-physicseffects–infullgenerality– bymeansofan EffectiveFieldTheory(EFT)approach. TheSMLagrangianbecomestherenormalizable partofamore general local Lagrangian which includes an infinite tower of higher-dimensional operators, constructed intermsofSMfieldsandsuppressed byinversepowersofascaleΛ > v. NP Thisgeneralbottom-upapproachallowsustoanalyseallrealisticextensionsoftheSMintermsof alimitednumberofparameters(thecoefficientsofthehigher-dimensional operators). Thedisadvantage ofthisstrategyisthatitdoesnotallowustoestablishcorrelationsofNewPhysics(NP)effectsatlowand highenergies(thescaleΛ definesthecut-offoftheEFT).Thenumberofcorrelationsamongdifferent NP low-energy observables is also very limited, unless some restrictive assumptions about the structure of theEFTareemployed. ThegenericEFTapproachissomehowtheoppositeofthestandardtop-downstrategytowardsNP, whereagiventheory–andaspecificsetofparameters–areemployedtoevaluatepossibledeviationsfrom theSM.Thetop-down approach usually allowsustoestablish severalcorrelations, both atlowenergies andbetweenlow-andhigh-energy observables. However,thepricetopayisthelossofgenerality. This isquiteahighpricegivenourlimitedknowledge aboutthephysicsabovetheelectroweak scale. An interesting compromise between these two extreme strategies is obtained by implementing specific symmetry restrictions on the EFT. The extra constraints increase the number of correlations in low-energy observables. The experimental tests of such correlations allow us to test/establish general features of the NP model (possibly valid both at low and high energies). In particular, B, D and K decaysareextremelyusefulindeterminingtheflavour-symmetrybreakingpatternoftheNPmodel. The EFTapproaches based on the Minimal Flavour Violation (MFV)hypothesis and its variations (MFV at largetanβ,n-MFV,...) haveexactlythisgoal. InSect.1.2.2weillustratesomeofthemainconclusions aboutNPeffectsintheflavoursectorde- rivedsofarwithingeneralEFTapproaches. InSect.1.2.3weanalyseinmoredetailtheMFVhypothesis, discussing: i) the general formulation and the general consequences of this hypothesis; ii) the possible strategies to verify or falsify the MFV assumption from low-energy data; iii) the implementation of the MFVhypothesisinmoreexplicitbeyond-the-SMframeworks,suchastheMinimalSupersymmetricSM (MSSM)orGrandUnifiedTheories(GUTs). 1.2.2 GenericEFTapproaches andtheflavourproblem TheNPcontributionstothehigher-dimensionaloperatorsoftheEFTshouldnaturallyinducelargeeffects in processes which are not mediated by tree-level SM amplitudes, such as meson-antimeson mixing (∆F = 2 amplitudes) or flavour-changing neutral-current (FCNC) rare decays. Up to now there is no evidence of deviations from the SM in these processes and this implies severe bounds on the effective scale of various dimension-six operators. For instance, the good agreement between SM expectations and experimental determinations of K0–K¯0 mixing leads to bounds above 104 TeV for the effective scale of ∆S = 2 operators, i.e. well above the few TeV range suggested by a natural stabilization of the electroweak-symmetry breaking mechanism. Similar bounds are obtained for the scale of operators contributing tolepton-flavour violating (LFV)transitions intheleptonsector, suchasµ eγ. → The apparent contradiction between these two determinations of Λ is a manifestation of what in manyspecific frameworks(supersymmetry, technicolour, etc.) goesunder thenameofflavour problem: if we insist on the theoretical prejudice that new physics has to emerge in the TeV region, we have to conclude that the new theory possesses a highly non-generic flavour structure. Interestingly enough, 7 ηη γ 11 00..55 V ub V 00 cb --00..55 --11 --11 --00..55 00 00..55 11 ρρ Fig.1: Constraintsontheρ¯–η¯planeusingtree-levelobservablesonly,fromRef.[7](seealsoRef.[8]). thisstructurehasnotbeenclearlyidentifiedyet,mainlybecausetheSM(thelow-energylimitofthenew theory),doesn’tpossessanexactflavoursymmetry. Withinamodel-independentapproach,weshouldtry todeduce thisstructure fromdata, usingtheexperimental information onFCNCtransitions toconstrain itsform. 1.2.2.1 Boundson∆F = 2operators In most realistic NP models we can safely neglect NP effects in all cases where the corresponding ef- fective operator is generated at the tree-level within the SM. This general assumption implies that the experimental determination of γ and V via tree-level processes (see Fig. 1) is free from the con- ub | | tamination of NP contributions. The comparison of the experimental data on meson-antimeson mixing amplitudes (both magnitudes and phases) with the theoretical SM expectations (obtained by means of thetree-level determination oftheCKMmatrix) allowstoderive someofthe moststringent constraints onNPmodels. In a wide class of beyond-the-SM scenarios we expect sizable and uncorrelated deviations from the SM in the various ∆F = 2 amplitudes.1 As discussed by several authors [2–6], in this case NP effects can be parameterized in terms of the shift induced in the B –B¯ mixing frequencies (q = d,s) q q andinthecorresponding CPVphases, B Hfull B¯ hBq|HeSffM|B¯qi = CBqe2iφBq = rq2e2iθq , (1) h q| eff | qi andsimilarlyfortheneutralkaonsystem. Thetwoequivalentparameterizations [(C ,φ )or(r ,θ )] Bq Bq q q havebeenshowntofacilitate theinterpretation oftheresultsoftheUTfit[7]andCKMfitter[8]collabo- rationsfortheB case,showninFig.2. d Themainconclusionsthatcanbedrawnformthepresentanalysesofnew-physicseffectsin∆F = 2amplitudes canbesummarizedasfollows: – Inallthethreeaccessible short-distance amplitudes (K0–K¯0,B –B¯ ,andB –B¯ )themagnitude d d s s ofthenew-physicsamplitudecannotexceed,insize,theSMshort-distancecontribution. Thelatter 1AsdiscussedforinstanceinRef.[1],thereisarathergenerallimitwhereNPeffectsin∆F =2amplitudesareexpected tobethedominantdeviationsfromtheSMintheflavoursector. Thishappensunderthefollowingtwogeneralassumptions: i)theeffectivescaleofNPissubstantiallyhigherthantheelectroweakscale;ii)thedimensionlesseffectivecouplingsruling ∆F =2transitionscanbeexpressedasthesquareofthecorresponding∆F =1coupling,withoutextrasuppressionfactors. 8 1-CL ]] oo[[BBdd8800 11..55 CfK i tM t e r 0.9 φφ 6600 BEAUTY 2006 0.8 4400 0.7 11 2200 d)d) 0.6 --220000 θθ (ra2 (ra2dd 00..55 00..45 --4400 0.3 --6600 00 0.2 --8800 0.1 00 11 22 33 44 55 66 CC --00..5500 00..55 11 11..55 22 22..55 33 33..55 0 BBdd rr22 dd Fig.2: ConstraintsontheeffectiveparametersencodingNPeffectsintheB –B¯ mixingamplitude(magnitude d d andphase)obtainedbytheUTfit[7](left)andCKMfitter[8](right)collaborations. MM 33..55 MM 33..55 SSdd SSss AA AA PP// 33 PP// 33 NNdd NNss AA AA 22..55 22..55 22 22 11..55 11..55 11 11 00..55 00..55 00 00 00 2200 4400 6600 8800 110000 112200 114400 116600 118800 00 2200 4400 6600 8800 110000 112200 114400 116600 118800 φφNNPP[[oo]] φφNNPP[[oo]] dd ss Fig.3:Constraintsontheabsolutevalueandphase(normalizedtotheSM)ofthenewphysicsamplitudeinB –B¯ d d andB –B¯ mixingfromref.[9]. s s is suppressed both by the GIM mechanism and by the hierarchical structure of the CKM matrix (V): G2M2 ∆F=2 F W (V∗V )2 M¯ (Q¯i γµQj)2 M (2) ASM ∼ 2π2 ti tj h | L L | i Therefore, new-physics models with TeV-scale flavoured degrees of freedom and (1) flavour- O mixing couplings are essentially ruled out. To quantify this statement, we report here the results oftherecentanalysis ofref.[9]. Writing Ck ∆F=2 ij M¯ (Q¯iΓkQj)2 M , ANP ∼ Λ2 h | | i (3) 9 whereΓk isagenericDiracandcolourstructure(seeref.[9]fordetails), onehas2 2 105 TeV C4 1/2 × ×| 12| Λ> 2 103 TeV C4 1/2  × ×| 13|  3×102 TeV×|C243|1/2 – AsclearlyshowninFig.3,intheB –B¯casethereisstillroomforanew-physicscontribution up d d to the SM one. However, this is possible only if the new-physics contribution is aligned in phase with respect to the SM amplitude (φNP close to zero). Similar, but thighter, constraints hold also d forthenewphysicscontribution totheK0–K¯0 amplitude. – Contrary to B –B¯ and K0–K¯0 amplitudes, at present there is only a very loose bound on the d d CPVphase oftheB –B¯ mixing amplitude. Thisleaves open the possibility ofobserving alarge s s (B J/Ψφ)atLHCb,whichwouldbeaclearsignalofphysicsbeyondtheSM. CP s A → Aswewilldiscussinthefollowing, thefirsttwoitemslistedabovefindanaturalexplanation withinthe so-called hypothesis ofMinimalFlavourViolation. 1.2.3 MinimalFlavourViolation A very reasonable, although quite pessimistic, solution to the flavour problem is the so-called Minimal Flavour Violation (MFV) hypothesis. Under this assumption, which will be formalized in detail below, flavour-violatinginteractionsarelinkedtotheknownstructureofYukawacouplingsalsobeyondtheSM. Asaresult,non-standardcontributionsinFCNCtransitionsturnouttobesuppressedtoalevelconsistent with experiments even for Λ few TeV. One of the most interesting aspects of the MFVhypothesis is ∼ that it can naturally be implemented within the EFT approach to NP [10]. The effective theories based onthis symmetry principle allow ustoestablish unambiguous correlations among NPeffects invarious raredecays. Thesefalsifiablepredictions arethekeyingredients toidentifyinamodel-independent way whicharetheirreducible sourcesofflavoursymmetrybreaking. 1.2.3.1 TheMFVhypothesis The pure gauge sector of the SM is invariant under a large symmetry group of flavour transformations: = U(1)5,where SM q ℓ G G ⊗G ⊗ = SU(3) SU(3) SU(3) , = SU(3) SU(3) (4) Gq QL ⊗ UR ⊗ DR Gℓ LL ⊗ ER andthreeofthefiveU(1)chargescanbeidentifiedwithbaryonnumber,leptonnumberandhypercharge [11]. Thislargegroupand,particularly theSU(3)subgroups controlling flavour-changing transitions, is explicitly brokenbytheYukawainteraction = Q¯ Y D H +Q¯ Y U H +L¯ Y E H + h.c. (5) Y L D R L U R c L E R L Since isalreadybrokenwithintheSM,itwouldnotbeconsistenttoimposeitasanexactsymmetry SM G beyondtheSM:evenifabsentathetree-level, thebreakingof wouldreappear atthequantumlevel SM G becauseoftheYukawainteraction. Themostrestrictivehypothesiswecanmaketoprotectinaconsistent wayflavourmixinginthequarksector, istoassumethatY andY aretheonlysourcesof breaking D U q G alsobeyondtheSM.Toimplementandinterpretthishypothesis inaconsistent way,wecanassumethat is indeed a good symmetry, promoting Y to be non-dynamical fields (spurions) with non-trivial q U,D G transformation properties underthissymmetry Y (3,¯3,1) , Y (3,1,¯3) . (6) U ∼ Gq D ∼ Gq 2ThechoiceΓ4 = PL⊗PR givesthemoststringentconstraints. Constraintsfromotheroperatorsareuptooneorderof magnitudeweaker. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.