ebook img

Axionic Antiferromagnetic Insulator Phase in a Correlated and Spin-Orbit Coupled System PDF

0.59 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Axionic Antiferromagnetic Insulator Phase in a Correlated and Spin-Orbit Coupled System

JournalofthePhysicalSocietyofJapan FULLPAPERS AxionicAntiferromagneticInsulatorPhaseinaCorrelatedandSpin-OrbitCoupled System AkihikoSekine∗andKentaroNomura InstituteforMaterialsResearch,TohokuUniversity,Sendai980-8577,Japan We study theoretically a three-dimensional correlated and spin-orbit coupled system, the half-filled extended Fu- Kane-Mele-Hubbardmodelonadiamondlattice,focusingonthetopologicalmagnetoelectricresponseoftheantifer- romagneticinsulatorphase.Intheantiferromagneticinsulatorphase,theDirac-likelow-energyeffectiveHamiltonianis obtained.Thenthethetaterm,whichresultsinthemagnetoelectricresponse,isderivedasaconsequenceofthechiral 4 anomaly.Therealizationofthedynamicalaxionfieldinourmodelisdiscussed.Therelationwithasymmetrybroken 1 phaseinducedbyinteractionsinlatticequantumchromodynamicsisalsodiscussed. 0 2 p e S 1. Introduction accordingtotheformula2 4 A great number of studies on topological insulators have 1 (cid:90) (cid:34) 2 (cid:35) 2 beendonesincethepioneeringworks1appeared,inthesearch θ= 4π d3k(cid:15)ijkTr Ai∂jAk−i3AiAjAk , (2) BZ for novel phenomena due to the topological properties of l] the system. The most prominent feature common to two- where Aµjν = i(cid:104)uµ|∂/∂kj|uν(cid:105), and |uν(cid:105) is the periodic Bloch e dimensional (2D) and 3D topological insulators is the exis- functionwithνtheoccupiedbands.Wecancalculateθfrom - r tenceoftheedge(surface)stateswhichareprotectedbytime- otherequivalentexpressions.10–12 However,sometechniques t s reversalsymmetry.Theseedgeorsurfacestatesareknownto (such as choosing a gauge for A) are required to calculate t. be robust against perturbations. On the one hand, one of the numerically.Insystemswherethesingle-particleHamiltonian ma noteworthycharacterspeculiarto3Dtopologicalinsulatorsis can be described as H(k) = (cid:80)5µ=1Rµ(k)αµ with matrices αµ the topological magnetoelectric effect which is described by satisfyingtheCliffordalgebra{αµ,αν}=2δµν,thereexistsan d- thethetaterm.2Thethetatermiswrittenas explicitexpressionforθ:8,13 con Sθ =(cid:90) dtd3x4πθe2(cid:126)2cE·B, (1) θ= 41π(cid:90)BZd3k(|R2||+R|R+4)R2|4R|3(cid:15)ijklRi∂∂Rkxj∂∂Rkyk ∂∂Rkzl, (3) [ (cid:113) where E and B are an electric field and magnetic field, re- wherei, j,k,l = 1,2,3,5and|R| = (cid:80)5 R2.Herenotethat 3 spectively. From this action, we obtain the cross-correlated µ=1 µ v responses expressed by P = θe2/(4π2(cid:126)c)B and M = only the matrix α4 is even under time-reversal. In this work, 3 θe2/(4π2(cid:126)c)E, with P the electric polarization and M the we derive an analytical expression for θ in a time-reversal 2 symmetry broken phase with the use of a field-theoretical magnetization. 5 method. 4 In the field theory literature, the action (1) is termed the . axion electrodynamics.3 The axion is an elementary particle The spin-orbit interaction has been revealed to be impor- 1 tant to realize topologically nontrivial phases. On the other 40 pCrPopporosebdleamboinutqfuoarntytuymeacrhsroamgoodtoynsaomlviecsth(eQCsoD-c)a.4l–l6edBsytrsounbg- hand,theeffectsoftheelectron-electroninteractionhasbeen a central subject in modern condensed matter physics. Now, 1 sequent studies, the axion is now considered to be essential : the interplay of spin-orbit coupling and electron correlation v to explain experimental results in particle physics and as- i trophysics.7 The axion is also considered as a candidate for isahottopic.Oneofthetriggersisthediscoveryofanovel X dark matter.7 However, regardless of intensive experimental Mottinsulatingstateinacorrelated5delectronsystem,which r revealed that the Mott insulating state is induced by strong searches,theaxionhasnotyetbeenfound.Theaxionsinter- a spin-orbitcoupling.14,15Recentstudieshaveshownthatnovel actwithphotons,andtheaxion-photoncouplingisdescribed phases,suchasthequantumspinHallinsulator,16thetopolog- byEq.(1)withθ beingtheaxionfield.Therefore,observing ical Mott insulator,17 the topological magnetic insulator,8,13 themagnetoelectricresponsesoriginatingfromEq.(1)incon- the Weyl semimetal,18 and the phase which is a condensed- densedmatterisequivalenttorealizingthe(dynamical)axion matteranalogofaphaseinlatticeQCD,19 emergebythein- field.Therehavebeensometheoreticalstudieswhichpropose terplayofspin-orbitcouplingandelectroncorrelation. ways to observe experimentally the dynamical axion field in condensedmatter.8,9 Electron correlation effects in topological insulators have also been investigated intensively.20 The Kane-Mele model When the system is time-reversal invariant, the condition thatθ=π(mod2π)isimposedfor3Dtopologicalinsulators, on the honeycomb lattice is well known as a model which and θ = 0 for normal insulators. On the other hand, when describesa2Dtopologicalinsulator.1 TheKane-Melemodel with on-site interaction, the Kane-Mele-Hubbard model, has time-reversalsymmetryofthesystemisbroken,thevalueof been one of the most investigated system so far. In this sys- θcanbearbitrary.Ingeneral,thevalueofθcanbecalculated tem,theantiferromagneticinsulatorphasedevelopsinthere- gion where the on-site interaction strength U is strong.21–26 ∗E-mail:[email protected] 1 J.Phys.Soc.Jpn. FULLPAPERS When the strength U is intermediate, it has been shown that the spin liquid phase emerges22–26 and pointed out the pos- sibility of the fractional topological insulator phase.21 In an- othermodelofa2Dtopologicalinsulatorwithon-siteinterac- tion, the Bernevig-Hughes-Zhang-Hubbard model, the exis- tenceofthetopologicalantiferromagneticinsulatorphasehas been pointed out.27 On the other hand, in the case of three- dimensions,theFu-Kane-Melemodelonthediamondlattice, the3DanalogoftheKane-Melemodel,isknownasamodel for a 3D topological insulator.28,29 What is the properties of an interacting Fu-Kane-Mele model, the Fu-Kane-Mele- Fig. 1. (Coloronline)(a)Adiamondlattice,whichconsistsoftwosub- Hubbardmodel?Sofartherehasbeennostudyonthismodel, lattices(redandblue),andeachsublatticeformsafcclattice.(b)Thefirst althoughinterestingphenomenaareexpectedtoemerge. Brillouinzoneofafcclattice.GreencirclesrepresenttheXpoints. Inthispaper,wefocusonthetopologicalmagnetoelectric response of the antiferromagnetic insulator phase in the ex- tended Fu-Kane-Mele-Hubbard model on a diamond lattice athalf-filling,withinthemean-fieldapproximation.Thispa- ces. The diamond lattice consists of two sublattices (A and per is organized as follows. In Sec. 2, the model we adopt B),witheachsublatticeformingafcclattice.Insuchacase, is explained. We take into account the on-site and nearest- we can define the basis c ≡ [c ,c ,c ,c ]T where k kA↑ kA↓ kB↑ kB↓ neighbor repulsive electron-electron interactions. In Sec. 3, thewavevectork isgivenbythepointsinthefirstBrillouin themean-fieldphasediagramispresented.InSec.4,weob- zoneofthefcclattice[seeFig.1(b)].Thenthesingle-particle tainanalyticallythevalueofθintheantiferromagneticinsula- HamiltonianH (k)[H ≡(cid:80) c†H (k)c ]iswrittenas28,29 0 0 k k 0 k torphase.FirstweshowthatwecanderivetheDiracHamil- tonian in the antiferromagnetic insulator phase. Then based (cid:88)5 H (k)= R (k)α , (6) on the Fujikawa’s method,30,31 we obtain the theta term as 0 µ µ µ=1 a consequence of the chiral anomaly. In Sec. 5, we discuss therealizationofthedynamicalaxionfieldinourmodel.we wherethecoefficientsRµ(k)aregivenby alsodiscusstherelationbetweenourantiferromagneticinsu- R (k)=λ[sinu −sinu −sin(u −u )+sin(u −u )], 1 2 3 2 1 3 1 latorphaseandtheso-called“Aokiphase”,asymmetrybro- kenphaseinducedbyinteractionsinlatticeQCD.32 R2(k)=λ[sinu3−sinu1−sin(u3−u2)+sin(u1−u2)], R (k)=λ[sinu −sinu −sin(u −u )+sin(u −u )], (7) 2. Model 3 1 2 1 3 2 3 Letusconsidera3Dlatticemodelwithelectroncorrelation R4(k)=t+δt1+t(cosu1+cosu2+cosu3), andspin-orbitcoupling.Themodelweadoptistheextended R (k)=t(sinu +sinu +sinu ). 5 1 2 3 Fu-Kane-Mele-Hubbard model on a diamond lattice at half- filling, in which the Hamiltonian is given by H = H0 +Hint Here u1 = k · a1, u2 = k · a2, and u3 = k · a3 with withthenon-interactingpart a1 = 2a(0,1,1),a2 = 2a(1,0,1)anda3 = 2a(1,1,0)beingthe primitive translation vectors. In the following, we set a = 1. (cid:88) 4λ (cid:88) H0 = tijc†iσcjσ+ia2 c†iσ·(d1ij×d2ij)cj, (4) Thealphamatricesαµaregivenbythechiralrepresentation: (cid:104)i,j(cid:105),σ (cid:104)(cid:104)i,j(cid:105)(cid:105) (cid:34)σ 0 (cid:35) (cid:34)0 1(cid:35) (cid:34)0 −i(cid:35) α = j , α = , α = , (8) andtheinteractionpart j 0 −σ 4 1 0 5 i 0 j (cid:88) (cid:88) H =U n n + V nn , where j = 1,2,3. In the present basis, the time-reversal op- int i↑ i↓ ij i j (5) i (cid:104)i,j(cid:105) erator and spatial inversion (parity) operator are given by T = 1⊗(−iσ )K (K is the complex conjugation operator) where c†iσ is an electron creation operator at a site i with andP=τ ⊗1,2respectively.Wehaveintroducedthehopping spin σ(=↑,↓), n = c† c , n = n +n , and a is the lat- 1 iσ iσ iσ i i↑ i↓ strength anisotropy δt1 due to the lattice distortion along the tice constant of the fcc lattice. The first and second terms [111] direction. Namely, we have set such that t = t +δt ij 1 of H0 represent the nearest-neighbor hopping and the next- for the [111] direction, and t = t for the other three di- ij nearest-neighborspin-orbitcoupling,respectively.d1ijandd2ij rections. When δt1 = 0, the system is a semimetal, i.e., the are the two vectors which connect two sites i and j of the energy bands touch at the three points Xr = 2π(δ ,δ ,δ ) rx ry rz same sublattice. They are given by two of the four nearest- (r= x,y,z).Finiteδt opensagapof2|δt |attheXr points. 1 1 neighbor vectors, a(1,1,1), a(−1,−1,1), a(1,−1,−1), and 4 4 4 TheZ2invariantofthesystemisgivenby a(−1,1,−1), with proper signs (directions of the vectors). oσ4f f=ree(σdo1,mσ.2T,σhe3)fiarrset athnedPsaeucolinmdatetrrimcessofforHthedsepsicnridbeegtrheee (−1)ν0 =(cid:89)8 sgnt+δt1+t(cid:88)3 cos(cid:16)Γi·ap(cid:17), (9) int i=1 p=1 on-siteandnearest-neighborrepulsiveelectron-electroninter- actions,respectively.Thelatticestructureofadiamondlattice where Γi are the eight time-reversal invariant momenta: isshowninFig.1(a). (0,0,0), (2π,0,0), (0,2π,0), (0,0,2π), (π,π,π), (π,π,−π), It is convenient to express the non-interacting part H of (π,−π,π),and(−π,π,π).Weseethatthesystemisatopologi- 0 the Hamiltonian in terms of the 4×4 alpha (gamma) matri- calinsulator(normalinsulator)when0<δt1 <2t(δt1 <0or 2 J.Phys.Soc.Jpn. FULLPAPERS δt >2t).Notethatinthispaperwedonotdistinguishaweak Mele-Hubbardmodelonahoneycomblattice.21Herewehave 1 topologicalinsulatorfromanormalinsulator. omittedirrelevantconstanttermsinEqs.(14)and(15). LetuslookatcloselyH (k)aroundthe Xr points.Setting Secondly,weapproximatethenearest-neighborinteraction 0 k = Xr +q and retaining the terms up to the order of q, we H =(cid:80) V nn as V (cid:104)i,j(cid:105) ij i j obtain the low-energy effective Hamiltonian near the Fermi (cid:88)(cid:88) (cid:104) levelaroundeachXpoint:28,29 HV ≈− Vij (cid:104)c†iσcjσ(cid:48)(cid:105)c†jσ(cid:48)ciσ+(cid:104)c†jσ(cid:48)ciσ(cid:105)c†iσcjσ(cid:48) (cid:104)i,j(cid:105)σ,σ(cid:48) (16) H0(Xx+q)=tqxα5+2λqyα2−2λqzα3+δt1α4, (cid:105) −(cid:104)c† c (cid:105)(cid:104)c† c (cid:105) . H (Xy+q)=tq α +2λq α −2λq α +δt α , (10) iσ jσ(cid:48) jσ(cid:48) iσ 0 y 5 z 3 x 1 1 4 H (Xz+q)=tq α +2λq α −2λq α +δt α . Weassumethatthevaluesof(cid:104)c†iσcjσ(cid:48)(cid:105)dependonthehopping 0 z 5 x 1 y 2 1 4 strength,namelyweset(cid:104)c† c (cid:105) = −∆δ t /t.Ontheother Theseareso-calledtheDiracHamiltonian.Forexample,the iσ jσ(cid:48) σσ(cid:48) ij hand,weneglecttheinteractionstrengthanisotropyduetothe energyspectrumaroundtheXx pointisreadilyobtainedas latticedistortionforsimplicity,i.e.,wesetV =V.Thisdoes ij (cid:113) not change the resultingphase diagram qualitatively. After a E(Xx+q)=± (tq )2+(2λq )2+(2λq )2+(δt )2. (11) x y z 1 calculation,weobtain Asmentionedabove,weseethatthesystemisgaplesswhen HMF =2NV(cid:104)3+(1+δt /t)2(cid:105)∆2+V∆/t (cid:88) t c† c . δt = 0andnonzeroδt isregardedasthemassoftheDirac V 1 ij iσ jσ 1 1 (cid:104)i,j(cid:105),σ quasiparticles.AteachXr point,oneofthethreecomponents (17) which originate from spin-orbit coupling R (k) disappears r and instead R (k) compensates for the q -dependence of the FinallycombiningEqs.(6),(14),(15),and(17),themean- 5 r effectiveHamiltonian. fieldHamiltonianofthesystemisgivenby (cid:104) (cid:105) HMF =2NUm2+2NV 3+(1+δt /t)2 ∆2 3. Mean-fieldphasediagram SDW 1   fielSdpianp-dperonxsiitmyawtiaovnetionstthaebiliintyte.—racLtieotnutserpmerfaonrmd dtheerivmeeathne- +(cid:88)c†k(cid:88)5 R˜µ(k)αµck, (18) mean-field Hamiltonian of the system. First we consider the k µ=1 spin-densitywave(SDW)instability.Todothis,wefirstlyap- whereR˜ (k)=R (k)−Um ,R˜ (k)=R (k)−Um ,R˜ (k)= proximatetheon-siteinteractionHU =U(cid:80)ini↑ni↓as R3(k)−1Um3, R˜41(k) = (1+1 V∆2/t)R4(k2), and R˜5(k2) =3 (1+ HU ≈U(cid:88)(cid:2)(cid:104)ni↓(cid:105)ni↑+(cid:104)ni↑(cid:105)ni↓−(cid:104)ni↑(cid:105)(cid:104)ni↓(cid:105) V∆/t)R5(k).Notethatm21+m22+m23 =m2.Thefreeenergyat zero temperature for the SDW instability is readily obtained i (12) (cid:105) as −(cid:104)c†c (cid:105)c†c −(cid:104)c†c (cid:105)c†c +(cid:104)c†c (cid:105)(cid:104)c†c (cid:105) . (cid:104) (cid:105) i↑ i↓ i↓ i↑ i↓ i↑ i↑ i↓ i↑ i↓ i↓ i↑ F (m,θ,ϕ,∆)=2NUm2+2NV 3+(1+δt /t)2 ∆2 SDW 1 Due to the spin-orbit coupling, the spin SU(2) symmetry is (cid:114) brokenandtheorientationsofthespinsarecoupledtothelat- −2(cid:88) (cid:88)5 (cid:104)R˜ (k)(cid:105)2. ticestructure.Weassumetheantiferromagneticorderingbe- µ=1 µ k tweenthetwosublatticesintermsofthesphericalcoordinate (19) (m,θ,ϕ): Charge-density wave instability.— Next we consider the (cid:104)Si(cid:48)A(cid:105)=−(cid:104)Si(cid:48)B(cid:105)=(msinθcosϕ,msinθsinϕ,mcosθ) charge-density wave (CDW) instability. To do this, we ap- (13) ≡m e +m e +m e , proximatetheinteractiontermsHU andHV as 1 x 2 y 3 z (cid:88) where(cid:104)S (cid:105)= 1(cid:104)c† σ c (cid:105)(µ= A,B)withi(cid:48)denotingthe HU ≈U (cid:2)(cid:104)ni↓(cid:105)ni↑+(cid:104)ni↑(cid:105)ni↓−(cid:104)ni↑(cid:105)(cid:104)ni↓(cid:105)(cid:3), (20) i(cid:48)µ 2 i(cid:48)µα αβ i(cid:48)µβ i(cid:48)-thunitcell.Thenafteracalculation,weobtain i (cid:88)(cid:104) (cid:105) (cid:88)  U −(cid:104)ni↑(cid:105)(cid:104)ni↓(cid:105)+(cid:104)c†i↑ci↓(cid:105)(cid:104)c†i↓ci↑(cid:105) =2NU m2f, (14) H ≈(cid:88)V (cid:104)n(cid:105)n +(cid:104)n (cid:105)n −(cid:104)n(cid:105)(cid:104)n (cid:105)−(cid:88)(cid:104)(cid:104)c† c (cid:105)c† c i f V ij i j j i i j iσ jσ(cid:48) jσ(cid:48) iσ (cid:104)i,j(cid:105) σ,σ(cid:48) U(cid:88)(cid:104)(cid:104)ni↓(cid:105)ni↑+(cid:104)ni↑(cid:105)ni↓−(cid:104)c†i↑ci↓(cid:105)c†i↓ci↑−(cid:104)c†i↓ci↑(cid:105)c†i↑ci↓(cid:105) +(cid:104)c†jσ(cid:48)ciσ(cid:105)c†iσcjσ(cid:48) −(cid:104)c†iσcjσ(cid:48)(cid:105)(cid:104)c†jσ(cid:48)ciσ(cid:105)(cid:105)(cid:111). i (21) (cid:88) (cid:88) (cid:88) (cid:88) =−U c† [m σ ]c +U c† [m σ ]c i(cid:48)A f f i(cid:48)A i(cid:48)B f f i(cid:48)B We assume a charge imbalance between the two sublattices i(cid:48) f=1,2,3 i(cid:48) f=1,2,3 such that (cid:104)n (cid:105) = (1+ρ)/2 and(cid:104)n (cid:105) = (1−ρ)/2. As for i(cid:48)Aσ i(cid:48)Bσ =−U(cid:88)c†k[m1α1+m2α2+m3α3]ck, cHaVse,wofeSaDssWumiens(cid:104)tca†ibσiclijσty(cid:48)(cid:105).T=he−n∆tδhσeσm(cid:48)tiej/atna-finedldViHj a=mViltaosniiannthoef k (15) theinteractiontermisobtainedas (cid:104) (cid:105) whereNisthenumberoftheunitcellsandthewavevectorsk HiMntF = NCρ2+2NV 3+(1+δt1/t)2 ∆2 takeNpointsinthefirstBrillouinzoneofthefcclattice.This (cid:88) (cid:88) (22) −Cρ c†(τ ⊗1)c +V∆/t t c† c , equationmeansthattheon-siteinteractiontermhasthesame k 3 k ij iσ jσ matrix form as the spin-orbit interaction term in the mean- k (cid:104)i,j(cid:105),σ field level. A similar result has been obtained in the Kane- whereC =4V−U/2,Nisthenumberoftheunitcells,andthe 3 J.Phys.Soc.Jpn. FULLPAPERS studiesbeyondthemean-fieldapproximation,forexample,in thehalf-filledone-dimensionalextendedHubbardmodel.34,35 Asisshownlater,whatisdifferentfromusualsystemsinour modelisthatthetopologicalmagnetoelectricresponsedueto theexistenceofthethetatermcanariseintheSDWphase.In thissense,wecalltheSDWphaseinourmodelthe“axionic SDW”(orthe“axionicantiferromagneticinsulator”).Forthe purposeofthisstudy,thatwederivethethetaterminatime- reversalsymmetrybrokenphase,wefocusontheSDWphase inthefollowing. 4. Magnetoelectricresponseoftheantiferromagneticin- sulatorphase Low-energyeffectiveHamiltonian.—Letusinvestigatethe Fig. 2. (Coloronline)Mean-fieldphasediagramoftheextendedFu-Kane- Mele-Hubbardmodelathalf-filling.Thestrengthsofthespin-orbitinterac- properties of the SDW phase, namely the antiferromagnetic tionandlatticedistortionareλ/t = 0.4andδt1/t = −0.4,respectively.The insulator phase. We consider the general case characterized antiferromagneticorderingissettobethe[111]directionasanexample.The bytheorderparameter(13).WhenUm (cid:28) 2λ(f = 1,2,3), f spin-densitywave(SDW)andcharge-densitywave(CDW)phasesaregiven we can derive the Dirac Hamiltonian around the X˜r points bynonzeromandρ,respectively.Whenm=ρ=0,thesystemisanormal insulator(NI).Inallthephases,∆takenonzeropositivevalues.IntheSDW whichareslightlydeviatedfromtheXr points: phase,thetopologicalmagnetoelectricresponsedescribedbythethetaterm H(X˜x+q)=t(cid:48)q α +2λq α −2λq α +δt(cid:48)α −Um α , [Eq.(1)]arises. x 5 y 2 z 3 1 4 1 1 H(X˜y+q)=t(cid:48)q α +2λq α −2λq α +δt(cid:48)α −Um α , y 5 z 3 x 1 1 4 2 2 H(X˜z+q)=t(cid:48)q α +2λq α −2λq α +δt(cid:48)α −Um α , z 5 x 1 y 2 1 4 3 3 (24) wavevectorsktakeN pointsinthefirstBrillouinzoneofthe fcclattice.CombiningEqs.(6)and(22),weobtainthemean- where t(cid:48) = t(1 + V∆/t), δt(cid:48) = δt (1 + V∆/t), (cid:16) (cid:17) (cid:16) 1 1(cid:17) fieldHamiltonianofthesystem.Thematrixτ3⊗1isdifferent X˜x = 2π,Um2,−Um3 , X˜y = −Um1,2π,Um3 , and X˜z = from the alpha matrices αµ, and thus the free energy for the (cid:16)Um1,−Um2,22πλ(cid:17). Fo2rλexample, the e2λnergy sp2λectrum around CDW instability is a little complicated but can be obtained 2λ 2λ theX˜x pointisreadilyobtainedas analyticallyas (cid:104) (cid:105) E(X˜x+q) F (ρ,∆)= NCρ2+2NV 3+(1+δt /t)2 ∆2 CDW 1 (cid:113) (25) (cid:88)(cid:88) (cid:114) (cid:113) (23) =± (t(cid:48)qx)2+(2λqy)2+(2λqz)2+(δt1(cid:48))2+(Um1)2. − R˜2+C2ρ2+2Cρ(cid:15) γ2, We see from Eq. (24) that the antiferromagnetic ordering k (cid:15)=±1 opensagapattheX˜rpoints,i.e.,lowerstheenergyofthesys- where R˜2 = (cid:80)5µ=1[R˜µ(k)]2 and γ2 = (cid:80)3j=1[R˜j(k)]2 with tem.WhenUmf isnotsmallcomparedto2λ,itisnotapparent R˜1(k) = R1(k), R˜2(k) = R2(k), R˜3(k) = R3(k), R˜4(k) = thattheDiracHamiltoniancanbederived.Thusinthefollow- (1+V∆/t)R4(k),andR˜5(k)=(1+V∆/t)R5(k). ing,weassumethatUmf issmall,althoughitisexpectedthat Mean-field phase diagram.— To obtain the mean-field the momentum points around which the Dirac Hamiltonians ground-state phase diagram, we have to minimize the free canbederivedexistevenwhenUm isnotsmall. f energies (19) and (23) by the conditions ∂FSDW/∂m = LetusanalyzeEq.(24).Theimportantpointisthatallthe ∂FSDW/∂θ = ∂FSDW/∂ϕ = ∂FSDW/∂∆ = 0and∂FCDW/∂ρ = five alpha matrices which anticommute with each other are ∂FCDW/∂∆ = 0, and then we have to compare them. The used.Tobespecific,letusfirstconsiderH(X˜x +q).Wecan phase diagram with the antiferromagnetic ordering set to be redefinethealphamatricesbecausetherepresentationofthe the [111] direction is shown in Fig. 2 as an example. The matrices is arbitrary. Redefining such that α → α , α → 5 1 3 phase diagrams for the other directions and for the positive −α ,andα → −α (α = α α α α )forthealphamatrices, 3 1 5 5 1 2 3 4 δt1 are qualitatively the same as Fig. 2. It was found that and t(cid:48)qx → qx, 2λqy → qy, and 2λqz → qz for the wave thetransitionfromthenormalinsulator(ortopologicalinsu- vector,36weobtain lator) phase to the SDW phase is of the second-order, and H(X˜x+q)=q α +q α +q α +δt(cid:48)α +Um α . (26) that the transition from the topological insulator (or normal x 1 y 2 z 3 1 4 1 5 insulator) phase to the CDW phase is of the first-order. The Inthesamemanner,H(X˜y+q)andH(X˜z+q)canberewritten values of ∆ are always nonzero and positive when V (cid:44) 0. as The obtained phase diagram looks similar to those of con- H(X˜y+q)=q α +q α +q α +δt(cid:48)α +Um α , ventionalcorrelatedelectronsystems(i.e.,theHubbardmod- x 1 y 2 z 3 1 4 2 5 (27) els).33 Namely, strong on-site electron-electron interaction H(X˜z+q)=qxα1+qyα2+qzα3+δt1(cid:48)α4+Um3α5. induces SDW phase and strong nearest-neighbor electron- We see that all the three effective Hamiltonians above are electroninteractioninducesCDWphase.However,notethat equivalent. Hence we can regard the Dirac quasiparticles other phases might be found when our model is studied be- aroundtheX˜rpointsasthequasiparticlesofthreeflavorschar- yond the mean-field approximation. Actually, another phase acterized by their masses Um . Note that the mass of Dirac f has been reported between the SDW and CDW phases by quasiparticles δt is renormalized to be δt(cid:48) due to the near- 1 1 4 J.Phys.Soc.Jpn. FULLPAPERS estneighborelectron-electroninteraction,andthatthesecond This is because the system with negative mass of the Dirac massUm isinducedbytheon-siteinteraction. quasiparticles is identified from the Z invariant as a normal f 2 Thethetaterm.—Herewederivethethetatermintheanti- insulator.S isthethetatermintheEuclideanspacetime: θ ferromagneticinsulatorphase,inthesamewayasthatof3D (cid:90) ((cid:80) κ )e2 topologicalinsulatorsisderived.Fromthediscussionabove, S =i d4x f f (cid:15)µνρλF F . (37) we can write down the low-energy effective (Euclidean) ac- θ 32π2(cid:126)c µν ρλ tionofthesystem,i.e.,theactionoftheDiracquasiparticles After dropping the irrelevant surface term [the second term interactingwithanexternalelectromagneticfieldA as oftheexponentinEq.(35)],weobtainthetotalactionofthe µ (cid:90) systemas (cid:88) (cid:104) (cid:105) SAFI = d4x ψ¯f(x) γµDµ−Mfeiκfγ5 ψf(x), (28) S =S +S . (38) f=1,2,3 AFI NI θ whereψ (x)isafour-componentspinor,D =∂ +ieA ,M = Actually Sθ is also a surface term, since we can rewrite as (cid:113) f µ µ µ f (cid:15)µνρλF F = 2(cid:15)µνρλ∂ (A F ). However, we are now inter- (δt(cid:48))2+(Um )2,cosκ = |δt(cid:48)|/M ,sinκ = Um /M ,and µν ρλ µ ν ρλ 1 f f 1 f f f f estedinthemagnetoelectricresponseofthesystem.Thuswe wehaveusedthefactthatα4 =γ0,α5 =−iγ0γ5andαj =γ0γj denotethetotalactionasabove.Rewritingthethetaterm(37) (j=1,2,3).Thesubscript f denotestheflavor.Herewehave intherealtime(t=−iτ),weobtainEq.(1). consideredthecaseofδt(cid:48) <0,namelythesystemisanormal The value of θ in the antiferromagnetic insulator phase is 1 insulatorwhentheinteractionsareweak. given as θ = (cid:80) κ = (cid:80) tan−1(Um /|δt(cid:48)|). It is known that f f f f 1 We follow the Fujikawa’s method30,31 and write down a θ = π (mod 2π) in 3D topological insulators and is θ = 0 in calculationbrieflyinwhatfollows.Letusconsiderainfinites- normalinsulators.However,θcanbearbitrarybetween0and imalchiraltransformationforeachflavor: πiftime-reversalsymmetryofthesystemisbroken.Wecan ψf →ψ(cid:48)f =e−iκfdφγ5/2ψf, ψ¯f →ψ¯(cid:48)f =ψ¯fe−iκfdφγ5/2, (29) obtainthevalueofθinthecaseofδt1 >0inthesamemanner asabove.Combiningbothcases,θiswrittenas whereφ∈[0,1].Thethetatermisgeneratedasaconsequence (cid:34) (cid:35) of the chiral anomaly after the transformation. The partition θ= π2(cid:2)1+sgn(δt1)(cid:3)− (cid:88) tan−1 δt (1U+mVf∆/t) , (39) functionistransformedas f=1,2,3 1 (cid:90) (cid:90) Z = D[ψ,ψ¯]e−SAFI[ψ,ψ¯] →Z(cid:48) = D[ψ(cid:48),ψ¯(cid:48)]e−SAFI[ψ(cid:48),ψ¯(cid:48)]. wheretheconditionthatUmf (cid:28)2λisrequired,andwehave written δt(cid:48) = δt (1+V∆/t) explicitly. Note that (1+V∆/t) 1 1 (30) is always positive, and thus the value of θ when m = 0 is f TheintegrandsinEq.(28)istransformedas determinedbythesignofδt1.Theregionwherethevalueof θbecomesnonzeroisshowninFig.2asthe“axionicSDW”. ψ¯fMfeiκfγ5ψf →ψ¯fMfeiκf(1−dφ)γ5ψf, Here we compare our analytical result for the value of θ, ψ¯ γ D ψ →ψ¯ γ D ψ +(i/2)κ dφ∂ (ψ¯ γ γ ψ ). Eq. (39), with an exact numerical value calculated by Eq. f µ µ f f µ µ f f µ f µ 5 f (2). A numerical study on the value of θ in the Fu-Kane- (31) Mele model on a diamond lattice10 indicates the relation ThendefiningtheJacobian Jf whichisinducedbythechiral θ ∝(cid:80) tan−1(Um /|δt(cid:48)|)when(Um /|δt(cid:48)|)issmall.Thusour transformationforeachflavorD[ψ ,ψ¯ ]→ J D[ψ ,ψ¯ ],the f f 1 f 1 f f f f f result is in qualitative agreement with the exact numerical partitionfunctionbecomes result. From our analytical result θ = (cid:80) tan−1(Um /|δt(cid:48)|), Z(cid:48) =(cid:90) D[ψ,ψ¯]e−S(cid:48)+2i(cid:80)fκf(cid:82) d4xdφ∂µ(ψ¯fγµγ5ψf)+(cid:80)flnJf, (32) ∞it.isTfhoeunndumthearticaθl →study3πs/h2owins ththeatlimθiftdo(Unmotf/h|δatfv1(cid:48)|e) t1→he (cid:80) tan−1(Um /|δt(cid:48)|) dependence when (Um /|δt(cid:48)|) is large, where f f 1 f 1 and that θ takes some value between 0 and π in the limit (cid:90) S(cid:48) = d4x(cid:88)ψ¯f(x)(cid:104)γµDµ−Mfeiκf(1−dφ)γ5(cid:105)ψf(x), (33) (Umf/|δt1(cid:48)|) → ∞.10 This suggests that our analytical result is considered not to be valid when (Um /|δt(cid:48)|) is large, i.e., f f 1 Um is large. The difference between our result and the ex- andtheJacobianJ iscalculatedtobe30,31 f f actnumericalresultintheregionwhereUm isnotsmallcan f (cid:34) (cid:90) κ e2 (cid:35) resultfromthat(i)theothercontributionstoθbecomesimpor- Jf =exp −i d4xdφ32πf2(cid:126)c(cid:15)µνρλFµνFρλ . (34) tantandunignorableasUmf becomeslarger,and(ii)itmight become impossible to derive the Dirac Hamiltonians around HereFµν = ∂µAν−∂νAµ andwehavewritten(cid:126)andcexplic- thepointsneartheoriginalXpointsasUmf becomeslarger. itly.Werepeatthisprocedureinfinitetimes,i.e.,integratethe exponentofEq.(32)overthevariableφfrom0to1.Thenwe 5. Discussions obtain Itshouldbenotedthatthethetatermisderivedonlyinodd (cid:90) Z(cid:48) = D[ψ,ψ¯]e−SNI+2i(cid:80)fκf(cid:82) d4x∂µ(ψ¯fγµγ5ψf)−Sθ, (35) spatialdimensions.IntheKane-Mele-Hubbardmodelonthe honeycomblatticeathalf-filling,whichisatwo-dimensional analog of the Fu-Kane-Mele-Hubbard model, the antiferro- whereS istheactionwhichrepresentsthenormalinsulator NI magnetic insulator phase is also realized.21–26 However, the phaseinthepresentcase: magnetoelectric response which results from the theta term (cid:90) (cid:88) (cid:104) (cid:105) SNI = d4x ψ¯f(x) γµDµ−Mf ψf(x). (36) doesnotappearinthatmodel. Theoriginthatgeneratessmalldeviationsofthevalueofθ f 5 J.Phys.Soc.Jpn. FULLPAPERS from0orπintheantiferromagneticinsulatorphaseoftheFu- thefluctuationofθuptothelinearorderinδm as f Kane-Mele-Hubbard model is the existence of the γ5 (or α5 δθ(r,t)≈ (cid:88) tan−1(cid:110)U(cid:104)m +δm (r,t)(cid:105)/|δt(cid:48)|(cid:111) in our notation) term, which breaks time-reversal symmetry, f f 1 in the low-energy effective action (28). What we would like f=1,2,3 (cid:88) (cid:16) (cid:17) tostresshereisthatwefoundtheappearanceoftheγ5 term − tan−1 Um /|δt(cid:48)| f 1 (40) intheantiferromagneticinsulatorphase.Thisisnotapparent f=1,2,3 at first sight of the mean-field Hamiltonian (18). Expanding (cid:88) the mean-field Hamiltonian around the X˜ points (which are ≈U/|δt1(cid:48)| δmf(r,t). slightly deviated from the original X points) and relabeling f thealphamatricesareessential. Thisequationsuggeststhatthedynamicalaxionfieldcanbe Here we mention the relation between the antiferromag- realized by the fluctuations of the spins, i.e., the spin-wave netic insulator phase in our model and the “Aoki phase”, a excitations,asinthecaseofRef.8.Anadvantageofourana- phasewithbrokentime-reversalandparitysymmetriesinlat- lyticalderivationoftheexpressionofθisthatwecanseethe tice QCD. The Aoki phase is characterized as the phase in- realization of the dynamical axion field immediately, as Eq. duced by interactions with the γ5 term, i.e., (cid:104)ψ¯iγ5ψ(cid:105) (cid:44) 0 in (40). In the case where we use expressions (2) or (3), it will addition to the usual mass renormalization (cid:104)ψ¯ψ(cid:105).32 It can be noteasytonoticetherealizationinourmodel. seenfromtheeffectiveHamiltonian[Eqs.(26)and(27)]that the situation in our model is analogous. Thus it can be said 6. Summary thattheantiferromagneticinsulatorphaseoftheextendedFu- Insummary,wehavestudiedthegroundstateandthetopo- Kane-Mele-Hubbard model is a condensed matter analog of logicalmagnetoelectricresponsedescribedbythethetaterm, theAokiphaseinlatticeQCD.Inotherwords,theAokiphase intheextendedFu-Kane-Mele-Hubbardmodelonadiamond incondensedmatterinthreespatialdimensionscanbechar- lattice at half-filling, within the mean-field approximation. acterizedbythemagnetoelectricresponsewhichresultsfrom The mean-field phase diagram was presented. It was found thethetatermwithnon-quantizedvalueofθ,i.e.,bytheaxion that the transition from the normal insulator (or topological electrodynamics.Theexistenceofasimilarcondensedmatter insulator)phasetotheantiferromagneticinsulatorphaseisof analogoftheAokiphaseinthreespatialdimensionshasbeen the second-order. We obtained the Dirac-like low-energy ef- pointedoutina3Dtopologicalinsulatorwithon-siteinterac- fectiveHamiltonianintheantiferromagneticinsulatorphase. tions.19 Wefoundthatthereexiststheγ termintheeffectiveHamilto- 5 TheAokiphasehasbeenfoundinlatticemodelsforQCD nian.Thisantiferromagneticinsulatorphaseisdifferentfrom such as the Wilson fermions,32,37 the Nambu-Jona-Lasinio conventional one, and can be regarded as a condensed mat- modelonalattice,38,39 andtheGross-Neveumodelonalat- ter analog of a symmetry broken phase in lattice QCD. We tice.32 In the latter two models, the interactions are local. derived the theta term by following the Fujikawa’s method Namely, from the viewpoint of the form of interactions, it and obtained the analytical value of θ. We have proposed a can be said that Hubbard-like models in condensed matter concrete model to describe the axion electrodynamics in the aresimilartotheNambu-Jona-LasiniomodelandtheGross- antiferromagneticinsulatorphase.Thedynamicalaxionfield Neveumodel.ItisknownthattheexistenceoftheAokiphase can be induced by the fluctuation of the order parameter. In can solve the U(1) problem in QCD. However, although the our model, the interplay of spin-orbit coupling and electron importance of the Aoki phase has been confirmed theoreti- correlationresultsintheemergenceofthetopologicalmagne- cally, the phase is not a realistic phase. This is because the toelectricresponseandtherealizationofthedynamicalaxion phaseisanartifactduetothenonzerolatticespacingoflattice field. QCD,37 andinaddition,theappearanceofthephasedepends onthevalueofbarequarkmass.32 Ontheotherhand,incon- Acknowledgments densed matter, electron systems can be naturally defined on A.S. is supported by the JSPS Research Fellowship for lattices, and the value of the bare mass of Dirac fermions is Young Scientists. This work was supported by Grant-in-Aid tunable. In our model, as mentioned in Sec. 2, the value is for Scientific Research (No. 25103703, No. 26107505 and determinedbythestrengthoflatticedistortion.Moreover,ex- No. 26400308) from the Ministry of Education, Culture, perimentalsearchesincondensedmatterarepossibleinprin- Sports,ScienceandTechnology(MEXT),Japan. ciple. Further investigations of the Aoki phase in condensed mattermightenableustosuggestsomeperceptiontothefield oflatticeQCD.Thisisaninterestingfuturesubject. Finallyletusconsiderbrieflythedynamicalbehaviorofθ 1) C.L.KaneandE.J.Mele,Phys.Rev.Lett.95,146802(2005);C.L. inourmodel,thedynamicalaxionfield,discussedinRef.8. KaneandE.J.Mele,Phys.Rev.Lett.95,226801(2005). When the spins fluctuate, i.e., when (cid:104)S (cid:105) = −(cid:104)S (cid:105) = [m + 2) X.-L.Qi, T.L.Hughes, and S.-C.Zhang, Phys.Rev.B 78, 195424 A B 1 (2008). δm (r,t)]e +[m +δm (r,t)]e +[m +δm (r,t)]e ,weobtain 1 x 2 2 y 3 3 z 3) F.Wilczek,Phys.Rev.Lett.58,1799(1987). 4) R.D.PecceiandH.R.Quinn,Phys.Rev.Lett.38,1440(1977);R.D. PecceiandH.R.Quinn,Phys.Rev.D16,1791(1977). 5) S.Weinberg,Phys.Rev.Lett.40,223(1978). 6) F.Wilczek,Phys.Rev.Lett.40,279(1978). 7) Markus Kuster, Georg Raffelt, and Berta Beltra´n (Eds.), Axions (SpringerBerlinHeidelberg,2008). 8) R.Li,J.Wang,X.-L.Qi,andS.-C.Zhang,Nat.Phys.6,284(2010). 9) H.OoguriandM.Oshikawa,Phys.Rev.Lett.108,161803(2012). 6 J.Phys.Soc.Jpn. FULLPAPERS 10) A.M.Essin, J.E.Moore, and D.Vanderbilt, Phys.Rev.Lett.102, 25) A.Vaezi, M.Mashkoori, and M.Hosseini, Phys.Rev.B 85, 195126 146805(2009). (2012). 11) A.M.Essin,A.M.Turner,J.E.Moore,andD.Vanderbilt,Phys.Rev. 26) W.Wu,S.Rachel,W.-M.Liu,andK.LeHur,Phys.Rev.B85,205102 B81,205104(2010). (2012). 12) S.Coh,D.Vanderbilt,A.Malashevich,andI.Souza,Phys.Rev.B83, 27) T.Yoshida,R.Peters,S.Fujimoto,andN.Kawakami,Phys.Rev.B87, 085108(2011). 085134(2013). 13) J.Wang,R.Li,S.-C.Zhang,andX.-L.Qi,Phys.Rev.Lett.106,126403 28) L.Fu,C.L.Kane,andE.J.Mele,Phys.Rev.Lett.98,106803(2007). (2011). 29) L.FuandC.L.Kane,Phys.Rev.B76,045302(2007). 14) B.J.Kim,H.Jin,S.J.Moon,J.-Y.Kim,B.-G.Park,C.S.Leem,J.Yu, 30) K.Fujikawa,Phys.Rev.Lett.42,1195(1979). T.W.Noh,C.Kim,S.-J.Oh,J.-H.Park,V.Durairaj,G.Cao,andE. 31) K.Fujikawa,Phys.Rev.D21,2848(1980). Rotenberg,Phys.Rev.Lett.101,076402(2008). 32) S.Aoki,Phys.Rev.D30,2653(1984);S.Aoki,Phys.Rev.Lett.57, 15) B.J.Kim,H.Ohsumi,T.Komesu,S.Sakai,T.Morita,H.Takagi,and 3136(1986). T.Arima,Science323,1329(2009). 33) See,forexample,Y.Zhang,Y.Ran,andA.Vishwanath,Phys.Rev.B 16) A.Shitade,H.Katsura,J.Kunesˇ,X.-L.Qi,S.-C.Zhang,andN.Nagaosa, 79,245331(2009);M.Kurita,Y.Yamaji,andM.Imada,J.Phys.Soc. Phys.Rev.Lett.102,256403(2009). Jpn.80,044708(2011). 17) D.PesinandL.Balents,Nat.Phys.6,376(2010). 34) M.Nakamura,J.Phys.Soc.Jpn.68,3123(1999);M.Nakamura,Phys. 18) X.Wan,A.M.Turner,A.Vishwanath,andS.Y.Savrasov,Phys.Rev.B Rev.B61,16377(2000). 83,205101(2011). 35) M.TsuchiizuandA.Furusaki,Phys.Rev.Lett.88,056402(2002). 19) A.SekineandK.Nomura,J.Phys.Soc.Jpn.82,033702(2013). 36) Wheninteractingwithanelectromagneticfield,thevectorpotentialA 20) M.HohenadlerandF.F.Assaad,J.Phys.Condens.Matter25,143201 isrescaledaswellasthespatialcoordinatex.Thenweseethatthetheta (2013). term(37)isinvariantunderrescaling.Namely,thevalueofθdoesnot 21) S.RachelandK.LeHur,Phys.Rev.B82,075106(2010). dependonthevaluesofλandtinthelow-energylimit. 22) M.Hohenadler, T.C.Lang, and F.F.Assaad, Phys.Rev.Lett.106, 37) S.SharpeandR.Singleton,Phys.Rev.D58,074501(1998). 100403(2011). 38) S.Aoki,S.Boettcher,andA.Gocksch,Phys.Lett.B331,157(1994). 23) Y.YamajiandM.Imada,Phys.Rev.B83,205122(2011). 39) V.Azcoiti,G.DiCarlo,E.Follana,M.Giordano,andA.Vaquero,Nucl. 24) M.Hohenadler,Z.Y.Meng,T.C.Lang,S.Wessel,A.Muramatsu,and Phys.B875,45(2013). F.F.Assaad,Phys.Rev.B85,115132(2012). 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.