ebook img

Autonomous Intelligent Vehicles - Theory, Algorithms, and Implementation PDF

163 Pages·2016·4.82 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Autonomous Intelligent Vehicles - Theory, Algorithms, and Implementation

Advances in Computer Vision and Pattern Recognition Forfurthervolumes: www.springer.com/series/4205 Hong Cheng Autonomous Intelligent Vehicles Theory, Algorithms, and Implementation Prof.HongCheng SchoolofAutomationEngineering UniversityofElectronicScienceand Technology 610054Chengdu,Sichuan, People’sRepublicofChina [email protected] SeriesEditors ProfessorSameerSingh,PhD Dr.SingBingKang ResearchSchoolofInformatics MicrosoftResearch LoughboroughUniversity MicrosoftCorporation Loughborough OneMicrosoftWay UK Redmond,WA98052 USA ISSN2191-6586 e-ISSN2191-6594 AdvancesinComputerVisionandPatternRecognition ISBN978-1-4471-2279-1 e-ISBN978-1-4471-2280-7 DOI10.1007/978-1-4471-2280-7 SpringerLondonDordrechtHeidelbergNewYork BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressControlNumber:2011943117 ©Springer-VerlagLondonLimited2011 Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,asper- mittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublish- ers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissuedbythe CopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesentto thepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Overtheyears,thefieldofintelligentvehicleshasbecomeamajorresearchtheme inintelligenttransportationsystemssincetrafficaccidentsareseriousandgrowing problemsallovertheworld.Thegoalofanintelligentvehicleistoaugmentvehicle autonomous driving either entirely or partly for the purposes of safety, comforta- bility,andsavingenergy.Indeed,manytechnologiesofintelligentvehiclesrootin autonomousmobilerobots.Thetasksofintelligentvehiclesbecomeevenmorechal- lengingcomparedtoindoormobilerobotsfortworeasons.First,real-timedynamic complexenvironmentperceptionandmodelingwillchallengecurrentindoorrobot technologies.Autonomousintelligentvehicleshavetofinishthebasicprocedures: perceivingandmodelingenvironment,localizingandbuildingmaps,planningpaths and making decisions, and controlling the vehicles within limit time for real-time purposes. Meanwhile, we face the challenge of processing large amounts of data frommulti-sensors,suchascameras,lidars,radars.Thisisextremelyhardinmore complexoutdoorenvironments.Towardthisend,wehavetoimplementthosetasks inmoreefficientways.Second,vehiclemotioncontrolfacesthechallengesofstrong nonlinearcharacteristicsduetohighmass,especiallyintheprocessesofhighspeed andsuddensteering.Inthiscase,bothlateralandlongitudinalcontrolalgorithmsof indoorrobotsdonotworkwell. Thisbookpresentsourrecentresearchworkonintelligentvehiclesandisaimed attheresearchersandgraduatestudentsinterestedinintelligentvehicles.Ourgoal in writing this book is threefold. First, it creates an updated reference book of in- telligentvehicles.Second,thisbooknotonlypresentsobject/obstacledetectionand recognition,butalsointroducesvehiclelateralandlongitudinalcontrolalgorithms, whichbenefitsthereaderskeentolearnbroadlyaboutintelligentvehicles.Finally, weputemphasisonhigh-levelconcepts,andatthesametimeprovidethelow-level detailsofimplementation.Wetrytolinktheory,algorithms,andimplementationto promoteintelligentvehicleresearch. Thisbookisdividedintofourparts.ThefirstpartAutonomousIntelligentVe- hicles presents the research motivationand purposes, the state-of-art of intelligent vehiclesresearch.Also,weintroducetheframeworkofintelligentvehicles.Thesec- ond part Environment Perception and Modeling which includes Road detection v vi Preface andtracking,Vehicledetectionandtracking,Multiple-sensorbasedmultiple-object tracking introduces environment perception and modeling. The third part Vehicle LocalizationandNavigationwhichincludesAnintegratedDGPS/IMUpositioning approach,Vehiclenavigationusingglobalviewspresentsvehiclenavigationbased on integrated GPS and INS. The fourth part Advanced Vehicle Motion control introducesvehiclelateralandlongitudinalmotioncontrol. Most of this book refers to our research work at Xi’an Jiaotong University and Carnegie Mellon University. During the last ten years of research, a large number ofpeoplehadbeenworkingintheSpringrobotProjectatXi’anJiaotongUniversity. I would like to deliver my deep respect to my Ph.D advisor, Professor Nanning Zheng,wholeadedmeintothisfield.AlsoIwouldliketothank:YuehuLiu,Xiaojun Lv, Lin Ma, Xuetao Zhang, Junjie Qin, Jingbo Tang, Yingtuan Hou, Jing Yang, Li Zhao, Chong Sun, Fan Mu, Ran Li, Weijie Wang, and Huub van de Wetering. Also,IwouldliketothankJieYangatCarnegieMellonUniversitywhosupported Hong Cheng’s research work during his stay at this university and Zicheng Liu at MicrosoftResearchwhohelpedHongChengdiscussvehiclenavigationwithglobal views.IalsowouldliketooursincereanddeepthankstoZhongjunDaiwhohelped immenselywithfigurepreparationandwiththetypesettingofthebookinLaTeX. Manypeoplehavehelpedbyproofreadingdraftmaterialsandprovidingcomments and suggestions, including Nana Chen, Rui Huang, Pingxin Long, Wenjun Jing, YuzhuoWang.Springerhasprovidedexcellentsupportthroughoutthefinalstages of preparation of this book, and I would like to thank our commissioning editor WayneWheelerforhissupportandprofessionalismaswellasSimonReesforhis help. Chengdu,People’sRepublicofChina HongCheng Contents PartI AutonomousIntelligentVehicles 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 ResearchMotivationandPurpose . . . . . . . . . . . . . . . . . . 3 1.2 TheKeyTechnologiesofIntelligentVehicles . . . . . . . . . . . . 5 1.2.1 Multi-sensorFusionBasedEnvironmentPerceptionand Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 VehicleLocalizationandMapBuilding . . . . . . . . . . . 7 1.2.3 PathPlanningandDecision-Making . . . . . . . . . . . . 8 1.2.4 Low-LevelMotionControl . . . . . . . . . . . . . . . . . 9 1.3 TheOrganizationofThisBook . . . . . . . . . . . . . . . . . . . 9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 TheState-of-the-ArtintheUSA . . . . . . . . . . . . . . . . . . . . . 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 CarnegieMellonUniversity—Boss . . . . . . . . . . . . . . . . . 13 2.3 StanfordUniversity—Junior . . . . . . . . . . . . . . . . . . . . . 15 2.4 VirginiaPolytechnicInstituteandStateUniversity—Odin . . . . . 16 2.5 MassachusettsInstituteofTechnology—Talos . . . . . . . . . . . 17 2.6 CornellUniversity—Skynet . . . . . . . . . . . . . . . . . . . . . 18 2.7 UniversityofPennsylvaniaandLehighUniversity—LittleBen . . 19 2.8 OshkoshTruckCorporation—TerraMax . . . . . . . . . . . . . . 20 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 TheFrameworkofIntelligentVehicles . . . . . . . . . . . . . . . . . 23 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 InteractiveSafetyAnalysisFramework . . . . . . . . . . . . . . . 25 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 vii viii Contents PartII EnvironmentPerceptionandModeling 4 RoadDetectionandTracking . . . . . . . . . . . . . . . . . . . . . . 33 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.1 Model-BasedApproaches . . . . . . . . . . . . . . . . . . 35 4.2.2 Multi-cueFusionBasedApproach . . . . . . . . . . . . . 35 4.2.3 Hypothesis-ValidationBasedApproaches. . . . . . . . . . 36 4.2.4 NeuralNetworkBasedApproaches . . . . . . . . . . . . . 36 4.2.5 Stereo-BasedApproaches . . . . . . . . . . . . . . . . . . 36 4.2.6 TemporalCorrelationBasedApproaches . . . . . . . . . . 37 4.2.7 ImageFilteringBasedApproaches . . . . . . . . . . . . . 37 4.3 LaneDetectionUsingAdaptiveRandomHoughTransform . . . . 37 4.3.1 TheLaneShapeModel . . . . . . . . . . . . . . . . . . . 37 4.3.2 TheAdaptiveRandomHoughTransform . . . . . . . . . . 38 4.3.3 ExperimentalResults . . . . . . . . . . . . . . . . . . . . 41 4.4 LaneTracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4.1 ParticleFiltering . . . . . . . . . . . . . . . . . . . . . . . 43 4.4.2 LaneModel . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4.3 DynamicSystemModel . . . . . . . . . . . . . . . . . . . 46 4.4.4 TheImagingModel . . . . . . . . . . . . . . . . . . . . . 46 4.4.5 TheAlgorithmImplementation . . . . . . . . . . . . . . . 48 4.5 RoadRecognitionUsingaMeanShiftalgorithm . . . . . . . . . . 51 4.5.1 TheBasicMeanShiftAlgorithm . . . . . . . . . . . . . . 52 4.5.2 VariousApplicationsoftheMeanShiftAlgorithm . . . . . 54 4.5.3 TheRoadRecognitionAlgorithm . . . . . . . . . . . . . . 55 4.5.4 ExperimentalResultsandAnalysis . . . . . . . . . . . . . 56 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5 VehicleDetectionandTracking . . . . . . . . . . . . . . . . . . . . . 61 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3 GeneratingCandidateROIs . . . . . . . . . . . . . . . . . . . . . 63 5.4 Multi-resolutionVehicleHypothesis . . . . . . . . . . . . . . . . 65 5.5 VehicleValidationusingGaborFeaturesandSVM . . . . . . . . . 67 5.5.1 VehicleRepresentation . . . . . . . . . . . . . . . . . . . 67 5.5.2 SVMClassifier. . . . . . . . . . . . . . . . . . . . . . . . 68 5.6 BoostedGaborFeatures . . . . . . . . . . . . . . . . . . . . . . . 71 5.6.1 BoostedGaborFeaturesUsingAdaBoost . . . . . . . . . . 72 5.6.2 ExperimentalResultsandAnalysis . . . . . . . . . . . . . 74 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6 Multiple-SensorBasedMultiple-ObjectTracking . . . . . . . . . . . 81 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3 ObstaclesStationaryorMovingJudgementUsingLidarData . . . 82 6.4 Multi-obstacleTrackingandSituationAssessment . . . . . . . . . 84 Contents ix 6.4.1 Multi-obstacleTrackingBasedonEKFUsingaSingle Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4.2 LidarandRadarTrackFusion . . . . . . . . . . . . . . . . 90 6.5 ConclusionandFutureWork . . . . . . . . . . . . . . . . . . . . 92 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 PartIII VehicleLocalizationandNavigation 7 AnIntegratedDGPS/IMUPositioningApproach . . . . . . . . . . . 99 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.3 AnIntegratedDGPS/IMUPositioningApproach . . . . . . . . . . 101 7.3.1 TheSystemEquation . . . . . . . . . . . . . . . . . . . . 101 7.3.2 TheMeasurementEquation . . . . . . . . . . . . . . . . . 104 7.3.3 DataFusionUsingEKF . . . . . . . . . . . . . . . . . . . 105 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 8 VehicleNavigationUsingGlobalViews . . . . . . . . . . . . . . . . . 109 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.2 TheProblemandProposedApproach . . . . . . . . . . . . . . . . 110 8.3 ThePanoramicImagingModel . . . . . . . . . . . . . . . . . . . 112 8.4 ThePanoramicInversePerspectiveMapping(pIPM) . . . . . . . . 114 8.4.1 TheMappingRelationshipBetweenEachImageanda PanoramicImage . . . . . . . . . . . . . . . . . . . . . . 114 8.4.2 ThePanoramicInversePerspectiveMapping . . . . . . . . 115 8.5 TheImplementationofthepIPM . . . . . . . . . . . . . . . . . . 116 8.5.1 TheFieldofViewofN CamerasintheVehicleCoordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.5.2 CalculationofEachInterestPoint’sViewAngleinthe VehicleCoordinateSystem . . . . . . . . . . . . . . . . . 116 8.5.3 TheMappingRelationshipBetweena3DOn-roadPoint andaPanoramicImage . . . . . . . . . . . . . . . . . . . 117 8.5.4 ImageInterpolationintheVehicleCoordinateSystem . . . 117 8.6 TheEliminationofWide-AngleLens’RadialError . . . . . . . . 118 8.7 CombiningPanoramicImageswithElectronicMaps . . . . . . . . 119 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 PartIV AdvancedVehicleMotionControl 9 TheLateralMotionControlforIntelligentVehicles . . . . . . . . . . 125 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 9.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 9.3 TheMixedLateralControlStrategy . . . . . . . . . . . . . . . . . 126 9.3.1 LinearRoads . . . . . . . . . . . . . . . . . . . . . . . . . 127 9.3.2 CurvilinearRoads . . . . . . . . . . . . . . . . . . . . . . 128 9.3.3 CalculatingtheRadiusofanArc . . . . . . . . . . . . . . 131 9.3.4 TheAlgorithmFlow . . . . . . . . . . . . . . . . . . . . . 132

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.