ebook img

Autonomous Anthropomorphic Robotic Arm to Monitor Plant Growth in a Laboratory PDF

162 Pages·2011·4 MB·English
by  SeelyeMark
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Autonomous Anthropomorphic Robotic Arm to Monitor Plant Growth in a Laboratory

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Autonomous Anthropomorphic Robotic Arm to Monitor Plant Growth in a Laboratory A thesis presented in partial fulfilment of the requirements for the degree of Masters in Engineering at Massey University Palmerston North New Zealand Mark Seelye 2011 Abstract An autonomous anthropomorphic robotic arm was designed, fabricated and programmed for monitoring of plant tissue grown in a modified in vitro clonal plant propagation system being developed by The New Zealand Institute for Plant & Food Research. The custom fabricated aluminium robotic arm uses a vertical linear ball shaft and high speed stepper motors to provide arm joints movements enabling the arm to swivel 180 degrees horizontally. Sensors located at the end of the arm are used to monitor plant growth and the immediate growing environment. This includes a compact colour zoom camera on a pan and tilt mount for image capturing, red, green and blue (RGB) colour sensors to monitor leaf colour as well as temperature, relative humidity and carbon dioxide sensors. The robotic arm is capable of reaching over multiple trays (600mm x 600mm) of plantlets. Captured plant tissue images are processed using innovative algorithms to determine tissue or whole plant growth rates over specified time periods. Leaf colour sensors provide information on tissue health status when compared to predetermined optimum values. Custom software fully automates the operation of the arm and the data capture, allowing the arm to return to specified sites (i.e. individual plantlets) at set time intervals to identify subtle changes in growth rates and leaf colour. This allows plant nutrient levels and the immediate environment to be regularly adjusted in response to continuous sensing resulting in optimised rapid growth with minimal human input. | i Acknowledgements In completing this Masters degree in Mechatronic Engineering, I would like to take this opportunity to sincerely thank: My supervisor, Dr Gourab Sen Gupta from the School of Engineering and Advanced Technology (SEAT), Massey University, Palmerston North, New Zealand for his guidance and expertise throughout this project from start to finish. Mr Clive Bardell, Mr Kerry Griffiths and Mr Greg McLeay from the School of Engineering and Advanced Technology’s (SEAT) metal workshop and CNC lab for their guidance and expertise in teaching me the hands on skills required to build the robotic arm and program and running of the CNC machine. Associate professor Donald Bailey from the School of Engineering and Advanced Technology (SEAT), for his input into colour transformations leading to the calibration of the colour sensors. Dr Rory Flemmer from the School of Engineering and Advanced Technology (SEAT) for his input into the control algorithms required to control the robotic arm and input into the image analysis. Mr John Seelye, Scientist, Breeding Technologies Group, The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand for sponsoring the entire project. ii | Table of Contents Abstract ................................................................................................................ i Acknowledgements ............................................................................................. ii List of Figures ................................................................................................... vii List of Tables...................................................................................................... xi 1. Introduction ................................................................................................. 1 2. Literature Review ........................................................................................ 5 2.1. Robotics in the Workplace ................................................................. 5 2.2. Robotic Systems .............................................................................. 14 2.3. Summary .......................................................................................... 18 3. Robotic Arm Design .................................................................................. 21 3.1. Required Parts ................................................................................. 21 3.1.1. Z-axis Motion – (Linear Ball Shaft) ...................................... 21 3.1.2. Stepper Motors .................................................................... 23 3.1.3. Bearings .............................................................................. 23 3.1.4. Gearing System ................................................................... 23 3.1.5. Prototypes ........................................................................... 24 3.1.6. Machining ............................................................................ 30 3.2. Automation & Control ....................................................................... 32 3.2.1. Overview ............................................................................. 32 3.2.2. Motor Controller ................................................................... 33 3.2.3. Microstep Driver .................................................................. 37 3.2.4. Stepper Motors .................................................................... 38 3.2.5. Control Theory (Inverse Kinematics) ................................... 40 4. Sensors .................................................................................................... 45 4.1. Colour .............................................................................................. 45 | iii 4.1.1. Background to Colour .......................................................... 45 4.1.2. Why an RGB Colour Space was Used ................................ 47 4.1.3. ColorPal Colour Sensor ....................................................... 49 4.1.4. TSC3200 Colour Sensors ................................................... 50 4.1.5. Selection and Calibration of Colour Sensors ....................... 51 4.2. Proximity Sensor .............................................................................. 70 4.3. Temperature and Humidity Sensor .................................................. 72 4.4. Carbon Dioxide Sensor .................................................................... 75 4.5. Microcontroller and Development Board .......................................... 75 4.6. Colour Camera ................................................................................. 77 4.6.1. Frame Grabber .................................................................... 79 4.7. Overview .......................................................................................... 80 5. Software Implementation .......................................................................... 83 5.1. Timer & Serial Port ........................................................................... 83 5.2. Motor Controller ............................................................................... 83 5.3. Microcontroller ................................................................................. 85 5.4. Sensor Programming ....................................................................... 87 5.5. Camera Control through Software ................................................... 89 5.6. Integration of a Database ................................................................. 91 5.7. Metrology methodology for plant size calculation ............................. 94 5.8. Integration of all Parts ...................................................................... 97 5.9. Automation of the Entire System ...................................................... 98 5.9.1. Homing the Robotic Arm ..................................................... 98 5.9.2. Manual Motor Control (manual control of the robot) ............ 99 5.9.3. Automatic Motor Control (Autonomous control of the robot) ................................................................................. 100 5.9.4. Overview ........................................................................... 101 iv | 6. Summary and Future Research.............................................................. 103 7. References ............................................................................................. 105 8. Appendix ................................................................................................ 109 8.1. Publications to Date ....................................................................... 109 8.2. Detailed SolidWorks Drawing Showing all Dimensions .................. 129 8.3. G code Generated in SolidCam of Part Shown Above ................... 130 8.4. Methodology / Information on linear transformation from XYZ to sRGB ......................................................................................... 133 8.5. Sony VISCA Protocol for the Various Camera Controls ................. 140 8.6. Basic Stamp Program Example ..................................................... 143 | v

Description:
All standard robotic systems are based on the following designs, with customised robotic systems C. Camps & D. Christen. (2009). Non-destructive assessment of apricot fruit quality by and Z components, we only really care about the summed result and not the individual parts. That is why I say
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.