ebook img

Automorphic Forms PDF

262 Pages·2012·1.223 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Automorphic Forms

Universitext Universitext SeriesEditors: SheldonAxler SanFranciscoStateUniversity,SanFrancisco,CA,USA VincenzoCapasso UniversitàdegliStudidiMilano,Milan,Italy CarlesCasacuberta UniversitatdeBarcelona,Barcelona,Spain AngusJ.MacIntyre QueenMary,UniversityofLondon,London,UK KennethRibet UniversityofCalifornia,Berkeley,Berkeley,CA,USA ClaudeSabbah CNRS,ÉcolePolytechnique,Palaiseau,France EndreSüli UniversityofOxford,Oxford,UK WojborA.Woyczynski CaseWesternReserveUniversity,Cleveland,OH,USA Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal, even experimental approach to their subject matter. Some of the most successful and established books in the series have evolved through several editions, always following the evolutionofteachingcurricula,intoverypolishedtexts. Thus as research topics trickle down into graduate-level teaching, first textbooks writtenfornew,cutting-edgecoursesmaymaketheirwayintoUniversitext. Forfurthervolumes: www.springer.com/series/223 Anton Deitmar Automorphic Forms AntonDeitmar Inst.Mathematik UniversitätTübingen Tübingen,Baden-Württemberg Germany TranslationfromGermanlanguageedition:AutomorpheFormenbyAntonDeitmar ©2010,SpringerBerlinHeidelberg SpringerBerlinHeidelbergisapartofSpringerScience+BusinessMedia AllRightsReserved ISSN0172-5939 ISSN2191-6675(electronic) Universitext ISBN978-1-4471-4434-2 ISBN978-1-4471-4435-9(eBook) DOI10.1007/978-1-4471-4435-9 SpringerLondonHeidelbergNewYorkDordrecht LibraryofCongressControlNumber:2012947923 MathematicsSubjectClassification(2010): 11F12,11F70,11-01,11F37 ©Springer-VerlagLondon2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Introduction Thisbookisanintroductiontothetheoryofautomorphicforms.Startingwithclas- sicalmodularforms,itleadstorepresentationtheoryoftheadelic GL(2) andcor- responding L-functions. Classical modular forms, which are introduced in the be- ginning of the book, will serve as the principal example until the very end, where it is verified that the classical and representation-theoretic approaches lead to the sameL-functions.Modularformsaredefinedasholomorphicfunctionsontheupper half plane, satisfying a particular transformation law under linear fractional maps withintegercoefficients.Wethenliftfunctionsontheupperhalfplanetothegroup SL (R), a step that allows the introduction of representation-theoretic methods to 2 thetheoryofautomorphicforms.Finally,groundringsareextendedtoadelicrings, whichmeansthatnumber-theoreticalquestionsarebuiltintothestructureandcan betreatedbymeansofanalysisandrepresentationtheory. Forthisbook,readersshouldhavesomeknowledgeofalgebraandcomplexanal- ysis. They should be acquainted with group actions and the basic theory of rings. Further,theyshouldbeabletoapplytheresiduetheoremincomplexanalysis.Ad- ditionally,knowledgeofmeasureandintegrationtheoryisusefulbutnotnecessary. One needs basic notions of this theory, like that of a σ-algebra and measure and somekeyresultslikethetheoremofdominatedconvergenceorthecompletenessof Lp-spaces. For the convenience of the reader, we have collected these facts in an appendix. The present book focuses on the interrelation between automorphic forms and L-functions. To increase accessibility, we have tried to obtain the central results withaminimumoftheory.Thishasthesideeffectthatthepresentationisnotofthe utmostgenerality;thereforetheinterestedreaderisgivenaguidetotheliterature. InChap.1theclassicalapproachtomodularformsviadoublyperiodicfunctions ispresented.TheWeierstrass℘-functionleadstoEisensteinseriesandthustomod- ular forms. The modular group and its modular forms are the themes of Chap. 2, which concludes with the presentation of L-functions. According to Dieudonné, there have been two revolutions in the theory of automorphic forms: the interven- tionofLiegroupsandtheinterventionofadeles.Lie groupsintervenein Chap.3, andadelesintherestofthebook.Wetrytomaintaincontinuityofpresentationby v vi Introduction continually referring back to the example of classical modular forms. Chapters 4 and 5 pave the way for Tate’s thesis, which is introduced in Chap. 6. We present it in a simplifiedform over the rationals insteadof an arbitrary number field. This is morethanadequatefor our purposes, asit bringsoutthecentralideasbetter.In Chap. 7 automorphic forms on the group of invertible 2×2 matrices with adelic entriesareinvestigated,andChap.8wetransfertheideasofTate’sthesistothisset- tingandperformtheanalyticcontinuationofL-functions.Forclassicalcuspforms we finallyshow that the classical and representation-theoreticapproachesgive the sameL-functions. For proofreading, pointing out errors, and many useful comments I thank Ralf Beckmann,EberhardFreitag,StefanKühnlein,JudithLudwig,FrankMonheimand MartinRaum. Contents 1 DoublyPeriodicFunctions . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 DefinitionandFirstProperties . . . . . . . . . . . . . . . . . . . . 1 1.2 The℘-FunctionofWeierstrass . . . . . . . . . . . . . . . . . . . 4 1.3 TheDifferentialEquationofthe℘-Function . . . . . . . . . . . . 7 1.4 EisensteinSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 BernoulliNumbersandValuesoftheZetaFunction . . . . . . . . 9 1.6 ExercisesandRemarks . . . . . . . . . . . . . . . . . . . . . . . 11 2 ModularFormsforSL (Z) . . . . . . . . . . . . . . . . . . . . . . . 15 2 2.1 TheModularGroup . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 ModularForms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 EstimatingFourierCoefficients . . . . . . . . . . . . . . . . . . . 30 2.4 L-Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5 HeckeOperators . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6 CongruenceSubgroups . . . . . . . . . . . . . . . . . . . . . . . 51 2.7 Non-holomorphicEisensteinSeries . . . . . . . . . . . . . . . . . 53 2.8 MaaßWaveForms . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.9 ExercisesandRemarks . . . . . . . . . . . . . . . . . . . . . . . 73 3 RepresentationsofSL (R) . . . . . . . . . . . . . . . . . . . . . . . . 79 2 3.1 HaarMeasuresandDecompositions. . . . . . . . . . . . . . . . . 79 3.1.1 TheModularFunction . . . . . . . . . . . . . . . . . . . . 84 3.2 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.3 ModularFormsasRepresentationVectors . . . . . . . . . . . . . 92 3.4 TheExponentialMap . . . . . . . . . . . . . . . . . . . . . . . . 97 3.5 ExercisesandRemarks . . . . . . . . . . . . . . . . . . . . . . . 100 4 p-AdicNumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.1 AbsoluteValues . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.2 Q asCompletionofQ . . . . . . . . . . . . . . . . . . . . . . . 107 p 4.3 PowerSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.4 HaarMeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 vii viii Contents 4.5 DirectandProjectiveLimits . . . . . . . . . . . . . . . . . . . . . 115 4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5 AdelesandIdeles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.1 RestrictedProducts . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.2 Adeles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.3 Ideles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.4 FourierAnalysisonA . . . . . . . . . . . . . . . . . . . . . . . . 131 5.4.1 LocalFourierAnalysis . . . . . . . . . . . . . . . . . . . 134 5.4.2 GlobalFourierAnalysis . . . . . . . . . . . . . . . . . . . 136 5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6 Tate’sThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.1 PoissonSummationFormulaandtheRiemannZetaFunction . . . 143 6.2 ZetaFunctionsintheAdelicSetting. . . . . . . . . . . . . . . . . 145 6.3 DirichletL-Functions . . . . . . . . . . . . . . . . . . . . . . . . 150 6.4 GaloisRepresentationsandL-Functions . . . . . . . . . . . . . . 156 6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7 AutomorphicRepresentationsofGL (A). . . . . . . . . . . . . . . . 163 2 7.1 PrincipalSeriesRepresentations . . . . . . . . . . . . . . . . . . . 163 7.2 FromRealtoAdelic . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.3 BochnerIntegral,CompactOperatorsandArzela–Ascoli . . . . . 172 7.3.1 TheArzela–AscoliTheorem. . . . . . . . . . . . . . . . . 180 7.4 CuspForms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 7.5 TheTensorProductTheorem . . . . . . . . . . . . . . . . . . . . 185 7.5.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.5.3 AdmissibilityofAutomorphicRepresentations . . . . . . . 205 7.6 ExercisesandRemarks . . . . . . . . . . . . . . . . . . . . . . . 206 8 AutomorphicL-Functions . . . . . . . . . . . . . . . . . . . . . . . . 211 8.1 TheLatticeM (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . 211 2 8.2 LocalFactors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 8.3 GlobalL-Functions . . . . . . . . . . . . . . . . . . . . . . . . . 224 8.4 TheExampleofClassicalCuspForms . . . . . . . . . . . . . . . 235 8.5 ExercisesandRemarks . . . . . . . . . . . . . . . . . . . . . . . 238 Appendix MeasureandIntegration . . . . . . . . . . . . . . . . . . . . 241 A.1 MeasurableFunctionsandIntegration . . . . . . . . . . . . . . . . 241 A.2 Fubini’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . 243 A.3 Lp-Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 Notation WewriteN={1,2,3,...}forthesetofnaturalnumbersandN ={0,1,2,...}for 0 thesetofnaturalnumberswithzero,aswellasZ,Q,RandCforthesetsofinteger, rational,real,andcomplexnumbers,respectively. IfAisasubsetofasetX,wewrite1 :X→CfortheindicatorfunctionofA, A i.e. (cid:2) 1 ifx∈A, 1 (x)= A 0 ifx∈/A. Aringisalwaysconsideredtobecommutativewithunit.IfRisaring,wedenote × byR itsgroupofinvertibleelements. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.