ebook img

Automofphic forms on GL(2) PDF

105 Pages·1979·0.677 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Automofphic forms on GL(2)

Automorphic Forms on GL(2) Herve´ Jacquet and Robert P. Langlands Formerly appeared as volume #114 in the Springer Lecture Notes in Mathematics, 1970, pp. 1-548 Chapter 1 i Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii ChapterI:LocalTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 §1. Weilrepresentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 §2. RepresentationsofGL(2,F)inthenon-archimedeancase . . . . . . . . . . . 15 §3. Theprincipalseriesfornon-archimedeanfields . . . . . . . . . . . . . . . . 58 §4. Examplesofabsolutelycuspidalrepresentations . . . . . . . . . . . . . . . . 77 §5. RepresentationsofGL(2,R) . . . . . . . . . . . . . . . . . . . . . . . . 96 §6. RepresentationofGL(2,C) . . . . . . . . . . . . . . . . . . . . . . . . . 138 §7. Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 §8. Oddsandends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 ChapterII:GlobalTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 §9. TheglobalHeckealgebra . . . . . . . . . . . . . . . . . . . . . . . . . . 189 §10. Automorphicforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 §11. Hecketheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 §12. Someextraordinaryrepresentations . . . . . . . . . . . . . . . . . . . . . 251 ChapterIII:QuaternionAlgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 267 §13. Zeta-functionsforM(2,F) . . . . . . . . . . . . . . . . . . . . . . . . . 267 §14. Automorphicformsandquaternionalgebras . . . . . . . . . . . . . . . . . 294 §15. Someorthogonality relations . . . . . . . . . . . . . . . . . . . . . . . . 304 §16. AnapplicationoftheSelbergtraceformula . . . . . . . . . . . . . . . . . . 320 Chapter 1 ii Introduction Two of the best known of Hecke’s achievements are his theory of L-functions with gro¨ssen- charakter,whichareDirichletserieswhichcanberepresentedbyEulerproducts,andhistheoryofthe Eulerproducts,associatedtoautomorphicformsonGL(2). Sinceagro¨ssencharakterisanautomorphic formonGL(1)oneistemptedtoaskiftheEulerproductsassociatedtoautomorphicformsonGL(2) play a role in the theory of numbers similar to that played by the L-functions with gro¨ssencharakter. In particular do they bear the same relation to the Artin L-functions associated to two-dimensional representations of a Galois group as the Hecke L-functions bear to the Artin L-functions associated toone-dimensional representations? Although wecannot answerthequestiondefinitively oneof the principalpurposesofthesenotesistoprovidesomeevidencethattheanswerisaffirmative. The evidence is presented in §12. It come from reexamining, along lines suggestedby a recent paperofWeil,theoriginalworkofHecke. Anythingnovelinourreexaminationcomesfromourpoint ofviewwhichisthetheoryofgrouprepresentations. Unfortunatelythefactswhichweneedfromthe representation theoryof GL(2)donotseemtobeintheliterature sowehavetoreview, inChapterI, therepresentationtheoryofGL(2,F)whenF isalocalfield. §7isanexceptionalparagraph. Itisnot usedintheHecketheorybutinthechapteronautomorphicformsandquaternionalgebras. Chapter I is long and tedious but there is nothing hard in it. Nonetheless it is necessary and anyone whoreally wants tounderstand L-functions shouldtakeatleasttheresultsseriouslyforthey areverysuggestive. §9and§10arepreparatorytotheHecketheorywhichisfinallytakenupin§11. Wewouldliketo stress,sinceitmaynotbeapparent,thatourmethodisthatofHecke. Inparticulartheprincipaltoolis theMellintransform. ThesuccessofthismethodforGL(2)isrelatedtotheequalityofthedimensions ofaCartansubgroupandtheunipotentradicalofaBorelsubgroupofPGL(2). Theimplicationisthat ourmethods donot generalize. The results, with theexceptionof the conversetheorem inthe Hecke theory,may. The right way to establish the functional equation for the Dirichlet series associated to the automorphic formsisprobably thatofTate. In§13weverify,essentially, thatthismethodleadstothe samelocalfactorsasthatofHeckeandin§14weusethemethodofTatetoprovethefunctionalequation for the L-functions associated to automorphic forms on the multiplicative group of a quaternion algebra. The results of §13 suggestarelation betweenthe characters of representations of GL(2)and thecharactersofrepresentationsofthemultiplicativegroupofaquaternionalgebrawhichisverified, usingtheresultsof§13,in§15. Thisrelationwaswell-knownforarchimedeanfieldsbutitssignificance hadnotbeenstressed. Althoughourproofleavessomethingtobedesiredtheresultitselfseemstous tobeoneofthemorestrikingfactsbroughtoutinthesenotes. Both§15and§16areafterthoughts; wedidnotdiscovertheresultsinthemuntiltherestofthe noteswerealmostcomplete. Theargumentsof§16areonlysketchedandweourselveshavenotverified all the details. However the theorem of §16 is important and its proof is such a beautiful illustration ofthepowerandultimatesimplicityoftheSelbergtraceformulaandthetheoryofharmonicanalysis onsemi-simplegroups that wecouldnot resistadding it. Although weare verydissatisfiedwith the methods of the first fifteen paragraphs we see no way to improve on those of §16. They are perhaps themethodswithwhichtoattackthequestionleftunsettledin§12. We hope to publish a sequel to these notes which will include, among other things, a detailed proofofthetheoremof§16aswellasadiscussionofitsimplicationsfornumbertheory. Thetheorem has,asthesethingsgo,afairlylonghistory. Asfarasweknowthefirstformsofitwereassertionsabout therepresentabilityofautomorphicformsbythetaseriesassociatedtoquaternaryquadraticforms. Chapter 1 iii As we said before nothing in these notes is really new. We have, in the list of references at the end of each chapter, tried to indicate our indebtedness to other authors. We could not however acknowledgecompletelyourindebtednesstoR.Godementsincemanyofhisideaswerecommunicated orallytooneofusasastudent. Wehopethathedoesnotobjecttothecompanytheyareforcedtokeep. Thenotes∗ weretypedbythesecretariesofLeetOliverHall. Thebulkoftheworkwasdoneby MissMaryEllenPetersandtoherwewouldliketoextendourspecialthanks. Onlytimecantellifthe mathematicsjustifieshergreatefforts. NewYork,N.Y. August,1969 NewHaven,Conn. ∗ thatappearedintheSLMvolume ChapterI:LocalTheory §1Weilrepresentations. Beforebeginning the studyof automorphic formswemustreviewtherepre- sentationtheoryofthegenerallineargroupintwovariablesoveralocalfield. Inparticularwehaveto prove the existence of various series of representations. One of the quickestmethods of doing this is tomakeuseoftherepresentations constructedbyWeilin[1]. Webeginbyreviewinghisconstruction adding,atappropriateplaces,someremarkswhichwillbeneededlater. InthisparagraphF willbealocalfieldandK willbeanalgebraoverF ofoneofthefollowing types: (i) ThedirectsumF ⊕F. (ii) AseparablequadraticextensionofF. (iii) TheuniquequaternionalgebraoverF. K isthenadivisionalgebrawithcentreF. (iv) ThealgebraM(2,F)of2×2matricesoverF. InallcasesweidentifyF withthesubfieldofK consistingofscalarmultiplesoftheidentity. In particularifK =F ⊕F weidentifyF withthesetofelementsoftheform(x,x). Wecanintroducean involutionιofK,whichwillsendxtoxι,withthefollowingproperties: (i) Itsatisfiestheidentities(x+y)ι =xι +yι and(xy)ι =yιxι. (ii) IfxbelongstoF thenx= xι. (iii) ForanyxinK bothτ(x) =x+xι andν(x)= xxι = xιxbelongtoF. IfK =F ⊕F andx =(a,b)wesetxι =(b,a). IfK isaseparablequadraticextensionofF the involutionιistheuniquenon-trivialautomorphismofK overF. Inthiscaseτ(x)isthetraceofxand ν(x)isthenormofx. IfK isaquaternionalgebraauniqueιwiththerequiredpropertiesisknownto exist. τ andν arethereducedtraceandreducednormrespectively. IfK isM(2,F)wetakeιtobethe involutionsending a b x = c d (cid:18) (cid:19) to d −b x= −c a (cid:18) (cid:19) Thenτ(x)andν(x)arethetraceanddeterminantofx. Ifψ =ψ isagivennon-trivialadditivecharacterofF thenψ =ψ ◦τ isanon-trivialadditive F K F characterofK. Bymeansofthepairing hx,yi =ψ (xy) K wecanidentifyK withitsPontrjagindual. Thefunctionν isofcourseaquadraticformonK whichis avectorspaceoverF andf = ψ ◦ν isacharacterofsecondorderinthesenseof[1]. Since F ν(x+y)−ν(x)−ν(y) =τ(xyι) and f(x+y)f−1(x)f−1(y)= hx,yιi theisomorphismofK withitselfassociatedtof isjustι. Inparticularν andf arenondegenerate. Chapter 1 2 LetS(K)bethe spaceof Schwartz-Bruhat functions onK. There is aunique Haar measuredx onK suchthatifΦbelongstoS(K)and Φ′(x) = Φ(y)ψ (xy)dy K ZK then Φ(0)= Φ′(x)dx. ZK Themeasuredx,whichisthemeasureonKthatweshalluse,issaidtobeself-dualwithrespecttoψ . K SincetheinvolutionιismeasurepreservingthecorollarytoWeil’sTheorem2caninthepresent casebeformulatedasfollows. Lemma1.1. There is a constant γ which depends on the ψ and K, such that for every function Φ F in S(K) (Φ∗f)(y)ψ (yx)dy = γf−1(xι)Φ′(x) K ZK Φ∗f istheconvolutionofΦandf. Thevaluesofγ arelistedinthenextlemma. Lemma1.2 (i) If K =F ⊕F or M(2,F) then γ =1. (ii) If K is the quaternion algebra over F then γ =−1. (iii) If F = R, K =C, and ψ (x)= e2πiax, F then a γ = i |a| (iv) If F is non-archimedean and K is a separable quadratic extension of F let ω be the quadratic character of F∗ associated to K by local class-field theory. If U is the group of units of F∗ F let m= m(ω) be the smallest non-negative integer such that ω is trivial on Um ={a∈ U |α ≡1(modpm)} F F F and let n =n(ψ ) be the largest integer such that ψ is trivial on the ideal p−n. If a is any F F F generator on the ideal pm+n then F ω−1(α)ψ (αa−1)dα γ = ω(a) UF F . R ω−1(α)ψ (αa−1)dα UF F (cid:12) (cid:12) (cid:12)R (cid:12) ThefirsttwoassertionsareprovedbyW(cid:12) eil. Toobtainthethirdap(cid:12)plythepreviouslemmatothe function Φ(z)= e−2πzzι. Weprovethelast. ItisshownbyWeilthat|γ| = 1andthatifℓissufficientlylargeγ differsfrom ψ (xxι)dx F Zp−Kℓ Chapter 1 3 byapositivefactor. Thisequals ψ (xxι)|x| d×x = ψ (xxι)|xxι| d×x F K F F Zp−Kℓ Zp−Kℓ ifd×xisasuitablemultiplicativeHaarmeasure. Sincethekernelofthehomomorphism ν iscompact theintegralontherightisapositivemultipleof ψ (x)|x| d×x. F F Zν(p−Kℓ) Setk = 2ℓifK/F isunramifiedandsetk = ℓifK/F isramified. Thenν(p−ℓ) = p−k ∩ν(K). K F Since1+ω istwicethecharacteristicfunctionofν(K×)thefactorγ isthepositivemultipleof ψ (x)dx+ ψ (x)ω(x)dx. F F Zp−Fk Zp−Fk Forℓandthereforeksufficientlylargethefirstintegralis0. IfK/F isramifiedwell-knownproperties ofGaussiansumsallowustoinferthatthesecondintegralisequalto α α ψ ω dα. F a a ZUF (cid:16) (cid:17) (cid:16) (cid:17) Sinceω =ω−1 weobtainthedesiredexpressionforγ bydividingthisintegralbyitsabsolutevalue. If K/F isunramifiedwewritethesecondintegralas ∞ (−1)j−k ψ (x)dx− ψ (x)dx F F Xj=0 (ZpF−k+j ZpF−k+j+1 ) Inthiscasem= 0and ψ (x)dx F ZpF−k+j is 0if k −j > n butequals qk−j if k−j ≤ n, where q is the numberof elementsinthe residue class field. Sinceω(a) = (−1)nthesumequals ∞ 1 ω(a) qm + (−1)jqm−j 1−  q   Xj=0 (cid:18) (cid:19) A little algebra shows that this equals 2ω(a)qm+1 so that γ = ω(a), which upon careful inspection is q+1 seentoequaltheexpressiongiveninthelemma. Inthenotationof[19]thethirdandfourthassertionscouldbeformulatedasanequality γ = λ(K/F,ψ ). F Itisprobablybestatthemomenttotakethisasthedefinitionofλ(K/F,ψ ). F IfK isnotaseparablequadraticextensionofF wetakeω tobethetrivialcharacter. Chapter 1 4 Proposition1.3 There is a unique representation r of SL(2,F) on S(K) such that α 0 1/2 (i) r Φ(x) =ω(α)|α| Φ(αx) 0 α−1 K (cid:18)(cid:18) (cid:19)(cid:19) 1 z (ii) r Φ(x)= ψ (zν(x))Φ(x) 0 1 F (cid:18)(cid:18) (cid:19)(cid:19) 0 1 (iii) r Φ(x)= γΦ′(xι). −1 0 If S(K)(cid:18)is(cid:18)given its(cid:19)u(cid:19)sual topology, r is continuous. It can be extended to a unitary representation of SL(2,F) on L2(K), the space of square integrable functions on K. If F is archimedean and Φ belongs to S(K) then the function r(g)Φ is an indefinitely differentiable function on SL(2,F) with values in S K). ( ThismaybededucedfromtheresultsofWeil. Wesketchaproof. SL(2,F)isthegroupgenerated α 0 1 z 0 1 by the elements , , and w = with α in F× and z in F subject to the 0 α−1 0 1 −1 0 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) relations α 0 α−1 0 (a) w = w 0 α−1 0 α (cid:18) (cid:19) (cid:18) (cid:19) −1 0 (b) w2 = 0 −1 (cid:18) (cid:19) 1 a −a−1 0 1 −a 1 −a−1 (c) w w = w 0 1 0 −a 0 1 0 1 (cid:18) (cid:19) (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) α 0 1 z together with the obvious relations among the elementsof the form and . Thus 0 α−1 0 1 (cid:18) (cid:19) (cid:18) (cid:19) the uniqueness of r is clear. To prove the existence one has to verify that the mapping specified by (i), (ii), (iii) preservesallrelations betweenthe generators. Forallrelations except(a), (b),and(c)this canbeseenbyinspection. (a)translatesintoaneasilyverifiablepropertyoftheFouriertransform. (b) translatesintotheequalityγ2 = ω(−1)whichfollowsreadilyfromLemma1.2. Ifa =1therelation(c)becomes Φ′(yι)ψ (ν(y))hy,xιidy = γψ (−ν(x)) Φ(y)ψ (−ν(y))hy,−xιidy (1.3.1) F F F ZK ZK which can be obtained from the formula of Lemma 1.1 by replacing Φ(y) by Φ′(−yι) and taking the inverseFouriertransform ofthe rightside. Ifaisnot1the relation (c)canagain bereducedto(1.3.1) providedψ isreplacedbythecharacterx→ ψ (ax)andγ anddxaremodifedaccordingly. Werefer F F to Weil’s paper for the proof that r is continuous and maybe extendedto aunitary representation of SL(2,F)inL2(K). Now take F archimedean. It is enough to show that all of the functions r(g)Φ are indefinitely differentiableinsomeneighborhoodoftheidentity. Let 1 x N = x ∈ F F 0 1 (cid:26)(cid:18) (cid:19) (cid:12) (cid:27) (cid:12) (cid:12) (cid:12) Chapter 1 5 andlet α 0 A = α ∈ F× F 0 α−1 (cid:26)(cid:18) (cid:19) (cid:12) (cid:27) (cid:12) Then N wA N is a neighborhood of the identity whi(cid:12)ch is diffeomorphic to N ×A ×N . It is F F F F F F (cid:12) enoughtoshowthat φ(n,a,n ) =r(nwan)Φ 1 is infinitely differentiable as a function of n, as a function of a, and as a function of n and that 1 the derivations are continuous on the product space. For this it is enough to show that for all Φ all derivativesofr(n)Φandr(a)ΦarecontinuousasfunctionsofnandΦoraandΦ. Thisiseasilydone. Therepresentation r dependsonthechoiceofψ . IfabelongstoF× andψ′ (x) = ψ (ax)let F F F r′ bethecorrespondingrepresentation. Theconstantγ′ = ω(a)γ. Lemma1.4 (i) The representation r′ is given by a 0 a−1 0 r′(g) =r g 0 1 0 1 (cid:18)(cid:18) (cid:19) (cid:18) (cid:19)(cid:19) (ii) If b belongs to K∗ let λ(b)Φ(x)=Φ(b−1x) and let ρ(b)Φ(x)= Φ(xb). If a= ν(b) then r′(g)λ(b−1) =λ(b−1)r(g) and r′(g)ρ(b)=ρ(b)r(g). In particular if ν(b) =1 both λ(b) and ρ(b) commute with r. Weleavetheverificationofthislemmatothereader. TakeKtobeaseparablequadraticextension ofF oraquaternionalgebraofcentreF. Inthefirstcaseν(K×)isofindex2inF×. Inthesecondcase ν(K×)isF× ifF isnon-archimedeanandν(K×)hasindex2inF× ifF isR. LetK′bethecompactsubgroupofK×consistingofallxwithν(x) =xxι =1andletG bethe + subgroupofGL(2,F)consistingofallgwithdeterminantinν(K×). G hasindex2or1inGL(2,F). + UsingthelemmaweshalldecomposerwithrespecttoK′ andextendrtoarepresentationofG . + LetΩbeafinite-dimensionalirreduciblerepresentationofK×inavectorspaceU overC. Taking thetensorproductofrwiththetrivialrepresentationofSL(2,F)onU weobtainarepresentationon S(K)⊗CU =S(K,U) whichwestillcallrandwhichwillnowbethecentreofattention. Proposition1.5 (i) If S(K,Ω) is the space of functions Φ in S(K,U) satisfying Φ(xh)=Ω−1(h)Φ(x) for all h in K′ then S(K,Ω) is invariant under r(g) for all g in SL(2,F). (ii) The representation r of SL(2,F) on S(K,Ω) can be extended to a representation r of G Ω + satisfying a 0 1/2 r Φ(x)=|h| Ω(h)Φ(xh) Ω 0 1 K (cid:18)(cid:18) (cid:19)(cid:19) if a =ν(h) belongs to ν(K×). Chapter 1 6 (iii) If η is the quasi-character of F× such that Ω(a) =η(a)I for a in F× then a 0 r =ω(a)η(a)I Ω 0 a (cid:18)(cid:18) (cid:19)(cid:19) (iv) The representation r is continuous and if F is archimedean all factors in S(K,Ω) are Ω infinitely differentiable. (v) IfU isaHilbertspaceandΩ isunitaryletL2(K,U)bethespaceofsquareintegrablefunctions from K to U with the norm kΦk2 = kΦ(x)k2dx Z If L2(K,Ω) is the closure of S(K,Ω) in L2(K,U) then r can be extended to a unitary Ω representation of G in L2(K,Ω). + Thefirstpartofthepropositionisaconsequenceofthepreviouslemma. LetH bethegroupof matricesoftheform a 0 0 1 (cid:18) (cid:19) with a in ν(K×). It is clear that the formula of part (ii) defines a continuous representation of H on S(K,Ω). MoreoverG isthesemi-directofH andSL(2,F)sothattoprove(ii)wehaveonlytoshow + that a 0 a−1 0 a 0 a−1 0 r g =r r (g)r Ω 0 1 0 1 Ω 0 1 Ω Ω 0 1 (cid:18)(cid:18) (cid:19) (cid:18) (cid:19)(cid:19) (cid:18)(cid:18) (cid:19)(cid:19) (cid:18)(cid:18) (cid:19)(cid:19) Let a = ν(h) and let r′ be the representation associated ψ′ (x) = ψ (ax). By the first part of the F F previouslemmathisrelationreducesto r′ (g) =ρ(h)r (g)ρ−1(h), Ω Ω whichisaconsequenceofthelastpartofthepreviouslemma. Toprove(iii)observethat a 0 a2 0 a−1 0 = 0 a 0 1 0 1 (cid:18) (cid:19) (cid:18) (cid:19)(cid:18) (cid:19) andthata2 = ν(a)belongstoν(K×). Thelasttwoassertionsareeasilyproved. Wenow insert someremarks whose significance will not be clearuntil we begin todiscuss the localfunctionalequations. WeassociatetoeveryΦinS(K,Ω)afunction W (g)=r (g)Φ(1) (1.5.1) Φ Ω onG andafunction + a 0 ϕ (a)= W (1.5.2) Φ Φ 0 1 (cid:18)(cid:18) (cid:19)(cid:19) onν(K×). ThebothtakevaluesinU.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.