ebook img

Automaticity, almost convexity and falsification by fellow traveler properties of some finitely ... PDF

178 Pages·2012·1.71 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Automaticity, almost convexity and falsification by fellow traveler properties of some finitely ...

Automaticity, almost convexity and falsification by fellow traveler properties of some finitely generated groups Murray James Elder Submitted in total fulfillment of the requirements of the Degree of Doctor of Philosophy June 2000. Revised September 2000 Department of Mathematics and Statistics The University of Melbourne Figure 1: Two Openings in Black over Wine, Mark Rothko 1958. The Tate Gallery, London. i Abstract We set out to examine the automaticity and almost convexity of an intrigu- ing class of groups. Brady and Bridson provide examples from this class with quadratic isoperimetric function that are not biautomatic. Thus show- ing these examples are automatic would answer a long-standing question in automatic group theory. Wise gives another example from this class which is non-Hopfian and CAT(0). Determining the automaticity of this example would answer one of two questions; are all CAT(0) groups automatic, and are all automatic groups Hopfian? Determining its almost convexity would give similar insight. We start by trying to understand the geodesic structure of the Cayley graphsoftheseexamples,foraparticularchoiceofgeneratingset. Thisleads us to define the notion of a pattern in the Cayley graph, and we succeed in characterising the set of all patterns for these groups. From this we can prove they are almost convex for the chosen generating sets. This gives the first example of a non-Hopfian almost convex group. We also prove that the full language of geodesics is not regular, and moreover there is no geodesic automatic language for these examples with respect to the chosen generating sets. Neumann and Shapiro define the falsification by fellow traveler prop- erty and show that if a group enjoys this property then its full language of geodesics is regular. Consequently the above examples do not enjoy this property. Related to it is the loop falsification by fellow traveler property which we introduce in this thesis. Figure 2 summarises some facts about these properties. The two non-implications shown result from this thesis. We ask whether all groups with a quadratic isoperimetric function enjoy the loop falsification by fellow traveler property. If so we would have a surprisingcharacterisationforthesegroups. AnexampleofStallingsappears to provide some clues to this question. Wealsoexaminethequestionofhigherdimensionalfinitenessandhigher dimensionalisoperimetricfunctionsforgroupsenjoyingthesegeometricprop- erties. We prove that if a group enjoys the falsification by fellow traveler property then it is of type F . We ask whether the larger class of almost 3 convex groups are of type F . Stallings’ group would be a potential coun- 3 terexample to this, since it is finitely presented and not of type F . We 3 prove that for two independently arising generating sets, Stallings’ group is ii full language of geodesics is regular ? finitely presented falsification by almost fellow traveller convex at most property exponential isoperimetric function finitely presented loop asynchronous loop falsification by falsification by at most fellow traveller fellow traveller quadratic property ? property ? isoperimetric function Figure 2: Implication diagram not almost convex, suggesting it is not almost convex for anygenerating set. iii This is to certify that (i) the thesis comprises only my original work, (ii) due acknowledgment has been made in the text to all other material used, (iii) the thesis is less than 100,000 words in length. iv Acknowledgments MythankstoWalterNeumannforhisencouragement, ideasandadvice, and thanksto Mike Shapiroandto AndrewRechnitzer fortheir helpthroughout my PhD. Thanks to Dean Chequer, Mum and Dad, Alisoun, Bill, Kathy, Esther, Lisa, Megan, Jessica, Suzanne Buchta, Lois Bedson, Janie Burrows, Bell Foozwell, Paul Gregg, Averil Newman, Amanda Johnson and Kerry Williams for their love, patience and support, and thanks to Noel Brady, Martin Bridson and Sarah Rees for their invaluable suggestions. v Contents 1 Introduction and Definitions 1 1.1 Some Open(ing) Questions . . . . . . . . . . . . . . . . . . . 1 1.2 Geometric Group Theory . . . . . . . . . . . . . . . . . . . . 4 1.3 Almost convex groups . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Isoperimetric functions . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Regular languages . . . . . . . . . . . . . . . . . . . . . . . . 14 1.6 Fellow traveler properties . . . . . . . . . . . . . . . . . . . . 15 1.7 Automatic groups . . . . . . . . . . . . . . . . . . . . . . . . 18 1.8 Changing weighted generating sets preserves automaticity . . 32 1.9 Some other miscellaneous geometric group theory . . . . . . . 35 1.9.1 Eilenberg MacLane spaces . . . . . . . . . . . . . . . . 35 1.9.2 CAT(0) groups . . . . . . . . . . . . . . . . . . . . . . 36 1.9.3 HNN extensions . . . . . . . . . . . . . . . . . . . . . 36 1.9.4 Hopficity . . . . . . . . . . . . . . . . . . . . . . . . . 38 2 Automaticity and almost convexity for an example of Brady and Bridson 39 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2 Asynchronous automaticity . . . . . . . . . . . . . . . . . . . 41 2.3 Geodesic structure and Patterns . . . . . . . . . . . . . . . . 46 2.3.1 Geodesics and “Pre-sequences” . . . . . . . . . . . . . 47 2.3.2 Sequences and Patterns . . . . . . . . . . . . . . . . . 50 2.3.3 An imaginary finite state automaton . . . . . . . . . . 52 2.3.4 Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.3.5 Moves as rewriting rules. . . . . . . . . . . . . . . . . 60 2.3.6 Proof of the Conjecture . . . . . . . . . . . . . . . . . 63 2.4 Almost convexity . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.5 Geodesic automatic languages . . . . . . . . . . . . . . . . . . 80 vi 3 The Wise Group 85 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.2 Asynchronous automaticity . . . . . . . . . . . . . . . . . . . 86 3.3 Geodesic structure and Patterns . . . . . . . . . . . . . . . . 90 3.4 Geodesic automatic structures. . . . . . . . . . . . . . . . . . 103 3.5 Proof of the Conjecture . . . . . . . . . . . . . . . . . . . . . 107 3.6 Almost convexity . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4 Finiteness properties, isoperimetric functions, the falsifica- tion by fellow traveler property and almost convexity 135 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.2 Finiteness for asynchronously automatic groups . . . . . . . . 136 4.3 Groups with the falsification by fellow traveler property are of type F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 3 4.4 Almost convexity and Stallings’ example . . . . . . . . . . . . 148 4.4.1 Baumslag et al’s presentation . . . . . . . . . . . . . . 148 4.4.2 Bestvina and Brady’s presentation . . . . . . . . . . . 152 4.4.3 Bridson’s presentation . . . . . . . . . . . . . . . . . . 154 4.5 Theloopfalsificationbyfellowtravelerpropertyandquadratic isoperimetric functions . . . . . . . . . . . . . . . . . . . . . . 155 vii List of Figures 1 Two Openings in Black over Wine, Mark Rothko 1958. The Tate Gallery, London. . . . . . . . . . . . . . . . . . . . . . . i 2 Implication diagram . . . . . . . . . . . . . . . . . . . . . . . iii 1.1 Γ (F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 {a,b} 2 1.2 Γ (F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 X 2 1.3 Making the graph ΓX(cid:48)(G) . . . . . . . . . . . . . . . . . . . . 6 1.4 γ of length k+m . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Length at most C(k)2 . . . . . . . . . . . . . . . . . . . . . . 10 1.6 Growth of the metric ball in a non-almost convex group . . . 10 1.7 Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.8 Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.9 The Pumping Lemma . . . . . . . . . . . . . . . . . . . . . . 15 1.10 The falsification by fellow traveler property . . . . . . . . . . 16 1.11 Geodesics asynchronously k-fellow traveling . . . . . . . . . . 17 1.12 Case 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.13 Case 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.14 Case 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.15 Case 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.16 Case 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.17 Case 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.18 Case 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.19 Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.20 Showing L has the fellow traveler property . . . . . . . . . . 34 Y 1.21 Padding the words so that they fellow travel . . . . . . . . . . 35 1.22 Cyclic subgroups of (cid:0) 2 . . . . . . . . . . . . . . . . . . . . . . 37 2.1 π (S1)= (cid:0) = (cid:104)a(cid:105), B = (cid:104)a,t |t−1a2t= a3(cid:105) . . . . . . . . . . 40 1 2,3 2.2 π (T) = (cid:0) 2 = (cid:104)a,b | ab = ba(cid:105). We choose cyclic subgroups 1 (cid:104)a(cid:105), (cid:104)ab(cid:105) and (cid:104)ab−1(cid:105). . . . . . . . . . . . . . . . . . . . . . . . 40 viii 2.3 A presentation 2-complex for (cid:104)a,b,s,t | ab = ba,s−1as = ab,t−1at =ab−1(cid:105). . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.4 A 2-combing of (cid:0) 2 . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5 r = s−1,x =ab . . . . . . . . . . . . . . . . . . . . . . . . . 43 n 2.6 r = s,x= b . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 n 2.7 r = s,x= ab−1 . . . . . . . . . . . . . . . . . . . . . . . . . 44 n 2.8 A (cid:0) 2 plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.9 An s-strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.10 Coset representatives for a normal form language . . . . . . . 47 2.11 w = c2b,r = s−1 . . . . . . . . . . . . . . . . . . . . . . . . 48 0 1 2.12 (All) geodesics to the first strip. . . . . . . . . . . . . . . . . . 48 2.13 The next plane for w =c2s−1d−2bs−1... . . . . . . . . . . . 49 2.14 Determining the next pre-sequence for w. . . . . . . . . . . . 50 2.15 Exiting the second plane by a different strip. . . . . . . . . . 51 2.16 “Initial patterns” (−1)(0)(1) . . . . . . . . . . . . . . . . . . 54 2.17 “Parallel moves” . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.18 Move 2 gives (−1)(0)(10)(1) . . . . . . . . . . . . . . . . . . . 56 2.19 Another move 2 gives (−1)(0)(10)(1110)(1) . . . . . . . . . . 57 2.20 Another move 2 gives (−1)(0)(10)(1110)(170)(1) . . . . . . . 58 2.21 A potentially “bad” pattern . . . . . . . . . . . . . . . . . . . 59 2.22 Move 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.23 Move 2: c/d →a . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.24 Move 3: a→c/d . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.25 Move 4: c/d →d/c . . . . . . . . . . . . . . . . . . . . . . . . 63 2.26 γ = r r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 1 2 2.27 γ = rx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.28 Last strip is s,t . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.29 γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 1 2.30 γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2 2.31 γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3 2.32 γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4 2.33 γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5 2.34 γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6 2.35 γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7 2.36 γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 8 2.37 Last strip is s−1,t−1 . . . . . . . . . . . . . . . . . . . . . . . 72 2.38 γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 1 2.39 γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2 2.40 γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3 2.41 γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 ix

Description:
quadratic falsification by fellow traveller property asynchronous loop falsification by fellow traveller property loop is regular of geodesics full language.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.