ebook img

Automatic Control Systems, 8th ed. (Solutions Manual) PDF

378 Pages·2002·9.85 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Automatic Control Systems, 8th ed. (Solutions Manual)

Chapter 2 MATHEMATICAL FOUNDATION 2-1 (a) Poles: s = 0, 0, - 1, - 10; (b) Poles: s = - 2, - 2; - ¥ ¥ ¥ Zeros: s = 2, , , . Zeros: s = 0. - The pole and zero at s = 1 cancel each other. (c) Poles: s = 0, - 1 + j, - 1 - j; (d) Poles: s = 0, - 1, - 2, ¥ . - Zeros: s = 2. 2-2 (a) (b) (c) G(s)= (s+55)2 G(s) = (s24+s4) +s+12 G(s)= s2 +44s +8 (d) (e) ¥ = 1 =(cid:229) kT(s+5) = 1 G(s) G(s) e 2 + - - T(s+5) s 4 k=0 1 e 2-3 (a) gt(u)(tu)=tut2uss t(1--+)--- 2+(2)s 2(3) s L Gs(e)12= 1ss(e -+2 e-- se 2-+ - 2s= 3s L) (11-+e--ss) gtu(tu)(t)u=t 2 (1--+)-£(2£) t 0 2 T ss s Gse(e)12= 1( -+= --ess - 12 ) 1- (s )2 T s s 1 g(t)=(cid:229) ¥ g (t - 2k)u (t - 2k) G(s)=(cid:229) ¥ 1(1- e- s)2e- 2ks = 1- e- s T s + - s k=0 k=0 s s(1 e ) (b) gt(t)utt=u2---+tt(-----u)t4ts(us0+.5t) (0.5)4(1) (1s)4(1.5) (1.5) s L Gs()e1e2=2-+s-+2s22(0e.52=e -- 0.51ss.5 - s L) 2((11-+e--0.5ss)) g (t) =2tu (t)- 4(t - 0.5)u (t - 0.5) +2(t - 1)u (t - 1) 0£ t £ 1 T s s s Gse(e)12=-+2 ( = e-- 0.50s.s5- 1 ) - 2 ( s )2 T 2 2 s s gt(g)()(=)t--=k((cid:229))u-¥ tkGse 1 = e (cid:229) ¥ 2 ( - 0.5sk)s2 - 2((1- e- 0.5s)) k=0 T s k=0ss220.5 e 1+ - s 2-4 = + - - - - - - - - + - - + - g(t) (t 1)u (t) (t 1)u (t 1) 2u (t 1) (t 2)u (t 2) (t 3)u (t 3) u (t 3) s s s s s s Gs()e11=- 21ee(e-++ -es - --- 23sss+- )s 1( 3 ) 2 s s 2-5 (a) Taking the Laplace transform of the differential equation, we get 1 1 1 1 1 2 + + = = = + - (s 5s 4)F(s) F(s) + + + + + + + s 2 (s 1)( s 2)( s 4) 6(s 4) 3(s 1) 2( s 2) = 1 - 4t +1 - t - 1 - 2t ‡ f (t) e e e t 0 6 3 2 (b) sX (s)- x (0)= X (s) x (0)=1 sX (s)- x (0) =- 2X (s)- 3X (s)+1 x (0) =0 1 1 2 1 2 2 1 2 2 s Solving for X(s) and X(s), we have 1 2 2 + + s 3s 1 1 1 1 = = + - X (s) 1 + + + + s(s 1)( s 2) 2s s 1 2( s 2) - - 1 1 1 X (s) = = + 2 + + + + (s 1)(s 2) s 1 s 2 Taking the inverse Laplace transform on both sides of the last equation, we get = + - t - - 2t ‡ =- - t + - 2t ‡ x (t) 0.5 e 0.5e t 0 x (t) e e t 0 1 2 2 2-6 (a) = 1 - 1 + 1 = 1 - 1 - 2t +1 - 3t ‡ G(s) g(t) e e t 0 + + 3s 2(s 2) 3(s 3) 3 2 3 (b) - = 2.5 + 5 + 2.5 =- - t + - t + - 3t ‡ G(s) g(t) 2.5e 5te 2.5e t 0 + + 2 + s 1 (s 1) s 3 (c) ( ) Gs(e)(g)t5e=0t20530020--=c3-o0s220(1)5tsins--- 2+(1) --- s- [ (1t) ]u (t1)- ss +1s 2 +4 s (d) - G(s)= 1 - s 1 = 1+ 1 - s Taking the inverse Laplace transform, 2 + + 2 + + 2 + + s s s 2 s s s 2 s s 2 gt(e)tte=1t+1+.0-=6+9sin1.-3t02.53ots0[i.n51.32369.311-.44(7sin1.3 )] - t ( 23cos1.323 ) t ‡ 0 (e) g(t)=0.5t2e- t t ‡ 0 2-7 Ø - 1200 0 øØ ø Œ œŒ œ Ø u (t)ø AB=-=Œ 02310( ) œŒ uœ = t Œ 1 œ º u (tß) Œº - 1 - 31- 0 œŒßº 1 œß 2 2-8 (a) (b) Ys()3 1 s + Y()s 5 = = Rs()25 s36++s 2 + s Rs(s)1s0 s4 ++5+2 (c) (d) Ys(s)(2s) + Ys()1 2 +e - s = = Rs(s)1ss02 4s3+ 22++ + Rs(s)2 s 2 +5 + 3 4 5 6 7 8 9

Description:
Real-world applications--Integrates real-world analysis and design applications throughout the text. Examples include: the sun-seeker system, the liquid-level control, dc-motor control, and space-vehicle payload control. * Examples and problems--Includes an abundance of illustrative examples and pro
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.