ebook img

Automatic Algorithm Selection for Complex Simulation Problems PDF

387 Pages·2012·3.833 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Automatic Algorithm Selection for Complex Simulation Problems

Roland Ewald Automatic Algorithm Selection for Complex Simulation Problems VIEWEG+TEUBNER RESEARCH Roland Ewald Automatic Algorithm Selection for Complex Simulation Problems With a foreword by Prof. Dr. Adelinde M. Uhrmacher VIEWEG+TEUBNER RESEARCH Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Dissertation Universität Rostock, 2010 1st Edition 2012 All rights reserved © Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2012 Editorial Office: Ute Wrasmann | Anita Wilke Vieweg+Teubner Verlag is a brand of Springer Fachmedien. Springer Fachmedien is part of Springer Science+Business Media. www.viewegteubner.de No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, pho- to copying, recording, or otherwise, without the prior written permission of the copyright holder. Registered and/orindustrial names,trade names,trade descriptions etc.cited in this publica- tionare part of the law for trade-mark protection and may not be used free in any form or by any means even if this is not specifically marked. Cover design: KünkelLopka Medienentwicklung, Heidelberg Printed on acid-free paper Printed in Germany ISBN 978-3-8348-1542-2 Foreword Simulation, anexperimentperformedwithamodel, belongstothedailyworkof mostscientistsandpractitionersinindustryalike. Aimedatsupportingtheunder- standing,theanalysis,and/orthedesignofcomplexdynamicsystems,simulation belongs to the methodological toolbox of natural sciences, engineering, but also medicine,sociology,economy,anddemography.Thediversityofapplicationareas andintentionsofsimulationstudiesisreflectedinaplethoraofavailablemethods. “Nosilverbulletdoesexist”—thisobservationofBrooks,referringtosoftware engineering in general, fits also well to simulation methods. Different models, infrastructures, and user preferences ask for different kinds of simulators. The performance of one method, e.g., in terms of execution speed, storage consump- tion,oraccuracyoftheresults,mightvarysignificantlyfromonesituationtothe next. Thus,usersinterestedinperformingsimulationstudieswiththeirmodelare faced with the problem of how to select among existing methods the most suit- ableone,anddevelopersofsimulationmethodsarefacedwiththeproblemofhow to evaluate the performance of their newly developed method in comparison to others. Thosearedauntingtasks,asmostsimulationmethodsarealsohighlycon- figurable. However,solvingthesetasksisalsoimportant,asitwilldeterminethe qualityofsimulationstudiesandtheirresultstoalargedegree. RolandEwald’sbookonsimulationalgorithmselectioncontributestothisquest. It shows how methods from machine learning, portfolio theory, experiment de- sign, adaptive software, and simulation algorithms can be combined to develop new approaches for simulation algorithm selection. One approach exploits prior knowledge in terms of a performance database, in which problem characteristics and performance characteristics are stored, so that performance patterns can be inductively learned and applied. The other approach does not depend on prior knowledge, but learns online by reinforcement, thereby exploiting the fact that multiplereplicationsarerequiredforstochasticsimulation. Tobeeffective, both depend on gathering performance data, and on efficiently restricting the search spaceofmappingsolutionstoproblems. Twocasestudies,intheareaofparallel distributed simulation and computational systems biology, respectively, demon- stratethepotentialofthedevelopedsolutions. Thebookrevealsinsightsintoseveralareasofresearchandshowshowresults canbefruitfullycombinedacrossdisciplinaryboundaries.Theconceptsdeveloped vi Foreword arerealizedandputtotestinaplug-inbasedmodelingandsimulationframework, to tackle problems in concrete simulation studies. Thus, the book nicely leads from theory to practice, and illuminates possible pitfalls along the way. It is of relevancetoallwhoareconcernedwiththequalityofsimulationstudies,andwho are interested in executing them in a more efficient and effective manner. The book is also relevant for the community of researchers who develop simulation algorithms, as it provides support for more systematic performance evaluations andthusmorevalidperformanceresults. Rostock,June2011 Prof. Dr. AdelindeM.Uhrmacher Preface IsubmittedthisthesistotheFacultyofComputerScienceandElectricalEngineer- ing of the University of Rostock in August 2010, after working on this topic for morethanfouryears.1 Manypeoplesupportedmeduringthistime. IwanttostartwiththankingmysupervisorLinUhrmacherforherenduringen- couragementandguidance. Thesamegoesforallcurrentandformerfriendsand colleaguesfromthemodelingandsimulationgroupattheUniversityofRostock; it was great fun to work with you and I learned a lot! You know how dubious I findmostrankings—andhowtovalueyourimmeasurablesupport?—sohereyou areinalphabeticalorder: AlexanderSteiniger,AlkeMartens,AnjaHampel,Arne Bittig,CarstenMaus,FieteHaack,FlorianMarquardt,JanHimmelspach,Mathias John, Mathias Röhl, Matthias Jeschke, Nadja Schlungbaum, Orianne Mazemon- det, Sigrun Hoffmann, Stefan Leye, Stefan Rybacki, and Susanne Jürgensmann. Andlet’snotforgetFritz;-) Special thanks go to Stefan Leye, who took over teaching one of my exercise groupsduringthelastsemesterofwritingthis,toMatthiasJeschke,whoprovided many interesting SSA algorithms for evaluation, and to my officemate Jan Him- melspach. IwouldalsoliketothankBingWang,whodevelopedthePDESalgo- rithmsIevaluatedinchapter10(p.303).KaustavSahaandSteffenTorbahnhelped mewithimplementingsomepartsoftheSPDM;RenéSchulzimplementedsome of the multi-armed bandit policies and worked with me on the genetic algorithm forportfolioselection(sec.7.2,p.208). Whilesucceedingatworkisonething,stayingsanewhilegoingthroughthisis another. I am deeply grateful to my family; for their support, their patience, and theirunderstanding. Rostock,June2011 RolandEwald 1Prototypicalimplementationsofthedevelopedmethodshavebeenrealizedfortheopen-sourcemod- elingandsimulationframeworkJAMESII((cid:0)(cid:2)(cid:2)(cid:3)(cid:4)(cid:5)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15)). Contents Foreword v ListofFigures xv ListofTables xix ListofListings xxi 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 SimulationofChemicalReactionNetworks . . . . . . . . 7 1.3.2 ParallelandDistributedDiscrete-EventSimulation . . . . 9 1.4 EpistemologicalViewpoint . . . . . . . . . . . . . . . . . . . . . 13 1.5 Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 I Background 17 2 AlgorithmSelection 19 2.1 TheAlgorithmSelectionProblem . . . . . . . . . . . . . . . . . 19 2.1.1 ImportantSub-Problems . . . . . . . . . . . . . . . . . . 21 2.1.2 EffectivenessandEfficiency . . . . . . . . . . . . . . . . 24 2.1.3 FurtherASPProperties . . . . . . . . . . . . . . . . . . . 29 2.1.4 ASPinaSimulationContext . . . . . . . . . . . . . . . . 32 2.2 AnalyticalAlgorithmSelection . . . . . . . . . . . . . . . . . . . 33 2.3 AlgorithmSelectionasLearning . . . . . . . . . . . . . . . . . . 36 2.3.1 ErrorSources,ErrorTypes,Bias-VarianceTrade-Off . . . 38 2.3.2 ReinforcementLearning . . . . . . . . . . . . . . . . . . 43 2.3.3 FurtherAspectsofLearning . . . . . . . . . . . . . . . . 50 2.4 AlgorithmSelectionasAdaptationtoComplexity . . . . . . . . . 52 2.4.1 ComplexSimulationProblems . . . . . . . . . . . . . . . 52 x Contents 2.4.2 ComplexAdaptiveSystems . . . . . . . . . . . . . . . . 53 2.4.3 Self-AdaptiveSoftwareandAutonomousComputing . . . 55 2.5 AlgorithmPortfolios . . . . . . . . . . . . . . . . . . . . . . . . 58 2.5.1 IdentifyingEfficientPortfolios . . . . . . . . . . . . . . . 60 2.5.2 FromFinancialtoAlgorithmicPortfolios . . . . . . . . . 61 2.5.3 AlgorithmPortfolioVariants . . . . . . . . . . . . . . . . 64 2.5.4 PortfoliosforSimulationAlgorithmSelection . . . . . . . 68 2.6 CategorizationofAlgorithmSelectionMethods . . . . . . . . . . 71 2.6.1 CategorizationAspects . . . . . . . . . . . . . . . . . . . 72 2.6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2.7 ApplicationsofAlgorithmSelection . . . . . . . . . . . . . . . . 80 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3 SimulationAlgorithmPerformanceAnalysis 93 3.1 ChallengesinExperimentalAlgorithmics . . . . . . . . . . . . . 93 3.1.1 EfficientImplementationsandComparability . . . . . . . 94 3.1.2 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . 96 3.1.3 SimulationExperimentDescriptions . . . . . . . . . . . . 100 3.2 ExperimentDesign . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.2.1 VarianceReduction . . . . . . . . . . . . . . . . . . . . . 101 3.2.2 Optimization,SensitivityAnalysis,andMeta-Modeling . 104 3.2.3 FurtherAspectsofPerformanceExperiments . . . . . . . 106 3.3 SimulatorPerformanceAnalysisandPrediction . . . . . . . . . . 108 3.3.1 AnalyticalMethods . . . . . . . . . . . . . . . . . . . . . 108 3.3.2 EmpiricalMethods . . . . . . . . . . . . . . . . . . . . . 112 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 II MethodsandImplementation 117 4 AFrameworkforSimulationAlgorithmSelection 119 4.1 RequirementsAnalysis: UseCases . . . . . . . . . . . . . . . . . 119 4.2 BriefIntroductiontoJAMESII . . . . . . . . . . . . . . . . . . 122 4.2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . 122 4.2.2 RelationtoSelf-AdaptiveSoftware . . . . . . . . . . . . 131 4.2.3 LimitationsofAlgorithmSelectioninJAMESII . . . . . 132 4.3 TechnicalRequirementsforAlgorithmSelectioninJAMESII . . 134 4.4 ASimulationAlgorithmSelectionFramework . . . . . . . . . . . 139 4.4.1 RelatedSoftwareSystems . . . . . . . . . . . . . . . . . 140

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.