ebook img

Automated Method for Discrimination of Arrhythmias Using Time, Frequency, and Nonlinear PDF

25 Pages·2017·4.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Automated Method for Discrimination of Arrhythmias Using Time, Frequency, and Nonlinear

sensors Article Automated Method for Discrimination of Arrhythmias Using Time, Frequency, and Nonlinear Features of Electrocardiogram Signals ShirinHajeb-Mohammadalipour1,MohsenAhmadi1,RezaShahghadami1andKiH.Chon2,* 1 DepartmentofBiomedicalEngineering,FacultyofMedicine,ShahidBeheshtiUniversityofMedicalSciences, Tehran1985717443,Iran;[email protected](S.H.-M.);[email protected](M.A.); [email protected](R.S.) 2 DepartmentofBiomedicalEngineering,UniversityofConnecticut,Storrs,CT06269,USA * Correspondence:[email protected];Tel.:+1-860-486-4767 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:5June2018;Accepted:26June2018;Published:29June2018 Abstract:Wedevelopedanautomatedapproachtodifferentiatebetweendifferenttypesofarrhythmic episodesinelectrocardiogram(ECG)signals,because,inreal-lifescenarios,asoftwareapplication doesnotknowinadvancethetypeofarrhythmiaapatientexperiences. Ourapproachhasfourmain stages: (1)Classificationofventricularfibrillation(VF)versusnon-VFsegments—includingatrial fibrillation(AF),ventriculartachycardia(VT),normalsinusrhythm(NSR),andsinusarrhythmias, such as bigeminy, trigeminy, quadrigeminy, couplet, triplet—using four image-based phase plot features,onefrequencydomainfeature,andtheShannonentropyindex.(2)ClassificationofAFversus non-AFsegments. (3)Prematureventricularcontraction(PVC)detectiononeverynon-AFsegment, using a time domain feature, a frequency domain feature, and two features that characterize the nonlinearityofthedata. (4)DeterminationofthePVCpatterns,ifpresent,tocategorizedistincttypes ofsinusarrhythmiasandNSR.WeusedtheMassachusettsInstituteofTechnology-BethIsraelHospital (MIT-BIH) arrhythmia database, Creighton University’s VT arrhythmia database, the MIT-BIH atrialfibrillationdatabase,andtheMIT-BIHmalignantventriculararrhythmiadatabasetotestour algorithm. Binarydecisiontree(BDT)andsupportvectormachine(SVM)classifierswereusedin bothstage1andstage3. Wealsocomparedourproposedalgorithm’sperformancetootherpublished algorithms. Our VF detection algorithm was accurate, as in balanced datasets (and unbalanced, inparentheses)itprovidedanaccuracyof95.1%(97.1%),sensitivityof94.5%(91.1%),andspecificity of 94.2% (98.2%). The AF detection was accurate, as the sensitivity and specificity in balanced datasets (and unbalanced, in parentheses) were found to be 97.8% (98.6%) and 97.21% (97.1%), respectively. OurPVCdetectionalgorithmwasalsorobust,astheaccuracy,sensitivity,andspecificity were found to be 99% (98.1%), 98.0% (96.2%), and 98.4% (99.4%), respectively, for balanced and (unbalanced)datasets. Keywords: automated arrhythmia classification; electrocardiography; health monitoring system; prematureventricularcontraction;ventricularfibrillation;atrialfibrillation 1. Introduction AccordingtotheCentersforDiseaseControlandPrevention,about735,000Americanssufferfrom myocardialinfarctioneveryyear[1]. Heartdiseaseisoneoftheleadingcausesofdeath,asitaccounts for25%ofmortalityintheUnitedStateseveryyear[2]. Itispossiblethatsomeofthesemortalities can be prevented if malignant arrhythmias are detected early and accurately. With the advent of wearable devices, which can facilitate personalized monitoring, continuous monitoring of cardiac healthcannowberealized. Tothisend,moreaccurateandautomatedarrhythmiadetectionalgorithms Sensors2018,18,2090;doi:10.3390/s18072090 www.mdpi.com/journal/sensors Sensors2018,18,2090 2of25 basedonelectrocardiogram(ECG)signalsneedtobedeveloped. Arrhythmiascanbedividedinto twomaingroups. Thefirstgroupofarrhythmiasisnotimminentlyfatalbutmayrequireproperly diagnosedtherapytopreventmorphingintothesecondgrouporaseriouscomplication. Arrhythmias inthesecondgroupneedimmediateattentionandtherapy. Amongthevariouskindsofarrhythmias, ventricularfibrillation(VF)islifethreatening[3], whileatrialfibrillation(AF)isnot, butAFisthe most prevalent arrhythmia and increases the risk of stroke [4,5]. Therefore, real-time monitoring andaccuratediagnosisofmalignantarrhythmiaiscrucialsothattimelypreventivetreatmentscan beperformed. Medical devices, such as vital sign monitors, ECG recorders, and Holter monitors, are now routinely available for collection of ECG data. However, other than implantable cardioverters, mostarenotequippedwithautomatedarrhythmiaclassificationalgorithms[6]. Numeroustechniques havebeenreportedforarrhythmiaclassification[6–8].Thesestudiesconsistofthreemajorphases: preprocessing,extractingfeatures,andclassificationofvarioustypesofarrhythmiasineachECGdata segment. ThemajorityofarrhythmiaclassificationisbasedonthevariabilityofR-Rintervalsorheart ratevariability(HRV)analysis[9–11]. (Oneexceptionisasystole, whichhasnoRpeaks, sincethe ECGisnearlyaflatline.) Morerecentstudieshavefocusedonclassificationofvariousarrhythmia patterns[6,12–29]. Theextractedfeaturesforpatternclassificationhaveincluded: (1)timedomain ormorphology-basedfeatures[15–17],suchasQRSdurationandamplitude,Pwavedurationand amplitude,Twaveamplitude,STsegmentduration,orQTsegmentduration;(2)frequencydomain features [6,18]; (3) nonlinearity features [19–23]; and (4) rhythm-based features [9–11]. Moreover, combining features from various approaches has been shown to improve classification accuracy. Forexample,wavelettransform(WT)featureshavebeenusedforclassificationofarrhythmiaswith goodoutcomes[24–27]. However,someoftheissueswithWTarethechoiceofthepropermother waveletfunction,appropriateselectionoftheorderofthefilter,andthelevelofsignaldecomposition. Onenoteworthyrecentapproachisvariationalmodedecomposition(VMD),whichisbasedonthe modificationoftheempiricalmodedecompositionmethod[13]. TheVMDmethodwasshownto provide good classification results, including differentiation of normal (N), premature ventricular contraction(PVC),left-bundlebranchblock(LBBB),right-bundlebranchblock(RBBB),prematurebeats (PB),andatrialprematurecontraction(APC)beats. WhiletheVMDmethodwasshowntoprovide goodclassificationresultsfortherhythmsnotedabove,itscapabilitytodifferentiatebetweenvarious segments,suchasnormalsinusrhythm(NSR),VF,andventriculartachycardia(VT),wasnotprovided. Webelieveourworkisoneofthefirstmethodswhichdoesnotassumethepresenceofaparticular typeofarrhythmia. Figure1providesourcomprehensiveapproachtodetectingvariousarrhythmias. We provide a comparison of our algorithm’s performance to the performance of some of the standoutalgorithmswhichusedthesamepublicdatabaseswedid,consistingoftheMassachusetts InstituteofTechnology-BethIsraelHospital(MIT-BIH)arrhythmiadatabase,CreightonUniversity’sVT arrhythmiadatabase,theMIT-BIHatrialfibrillationdatabase,andtheMIT-BIHmalignantventricular arrhythmiadatabase[30]. Sensors2018,18,2090 3of25 Sensors 2018, 18, x FOR PEER REVIEW 3 of 25 FFiigguurree 11.. TThhee pprrooppoosseedd aapppprrooaacchh ttoo ddeetteecctt mmuullttiippllee ttyyppeess ooff mmaalliiggnnaanntt aarrrrhhyytthhmmiicc eeppiissooddeess.. AAFF:: aattrriiaall fifibbrriillllaattiioonn;; VVFF:: vveennttrriiccuullaarr fifibbrriillllaattiioonn;; PPVVCC:: pprreemmaattuurree vveennttrriiccuullaarr ccoonnttrraaccttiioonn;; NNSSRR:: nnoorrmmaall ssiinnuuss rrhhyytthhmm;; BBGG:: bbiiggeemmiinnyy;; TTGG:: ttrriiggeemmiinnyy;; QQGG:: qquuaaddrriiggeemmiinnyy;; VVTT:: vveennttrriiccuullaarr ttaacchhyyccaarrddiiaa.. 22.. MMaatteerriiaallss aanndd MMeetthhooddss IInn rreeaall--lliiffee sscceennaarriiooss,, aapppplliiccaattiioonnss sshhoouulldd nnoott bbee pprrooggrraammmmeedd wwiitthh tthhee ttyyppee ooff aarrrrhhyytthhmmiiaa aa ppaattiieenntt eexxppeerriieenncceess ((tthheeyy mmaayy hhaavvee nnoo kknnoowwnn aarrrrhhyytthhmmiiaass,, aanndd tthhee ggooaall iiss ttoo ddeetteecctt aannyy tthhaatt ooccccuurr)).. HHeennccee,, tthheep puurprposoeseo foofu oruarlg aolrgitohrmithdmev deleovpemloepnmtiesntto issc rteoe nscfroerevna rfiooru vsatyripoeusso tfyaprrehsy othf mariarhs,ybthecmauiasse, abewcaeuarsaeb al ewdeeavraicbeleu dseinvgicae uutsoimnga ateudtoamrrahtyedth amrrihaydtehtmecitai odnetwecitlilosnta wrtilwl sittahrnt woipthri onro kpnroiowr lkendogwe,leydegteit, myeut sitt bmeuasbtl ebeto afibnled taon fyinadrr ahnyyth amrriah,yothrmnoian,e oart naloln. Ae sats haollw. Ansi nshFoigwunr ein1 ,Fthigeuarleg o1,r itthhem awlgaosridthemsig wneads tdoebsiegngeende troa lbaen dgeindeernatli fiaensdv aidrieonutisfiteysp evsaroifoaursr htyypthems oiaf aarsruhbyjethctmmiaa ya esxupbejericet nmcea.yT hexepcelarisesnificec.a tTiohne pclraoscseisfiscianticolund pesrofoceusrsm inacinlusdtaegs efso.uRre gmaardinle ssstaogfetsh. eRaergrhayrdthlemssic otyf pteheo fatrhrehyinthpmutisce tgympeen ot,fp trhoec eisnspinugt ssteagrmtseantt,s tpargoec1es.sTinhgis ssttaargtse dati ssctraimgei n1a. teTshbise tswtaegeen dViFscarinmdinnaotne-sV bFe.tTwheeeVn FVaFr rahnydth nmoina-VcaFn. bTehefa tVaFl, tahrurhsyntheemdisa tcoabne bdee ftaetcatle,d thfiurss t.neTehdes steoc obned dsettaegceteidn vfiorlsvt.e sThdeis csreicmoninda tsitoangeb eintwvoelevnesA dFisacnrdimnionnat-iAoFn sbeegtwmeeennts AuFsi nagndth neoanp-pArFoa scehgdmeesncrtisb uedsining [4th,5e] ,aapspwroeallcahs dcelasscsriifibceadt iionn [a4l,g5o],r iatsh mwse.llT ahse cthlairsdsifsitcaagteioins dalegteocrtiitohnmosf. PTVhCe btehairtsda nstdagneo ni-sP VdCetebcetaiotsn( noofr mPValC(N b),eaattrsi aalnpdre mnoantu-PreVcCo nbtreaacttsi o(nn(oArmPCal) ,(pNre)m, aattruirael bperaetmsa(PtuBr)e, ectocn.)trinacntioonn- A(AFPsCeg),m pernemts.aFtuinrea lblye,atthse (lPaBst),s etatcg.e) iinn vnoolnv-eAsFfi nsdeginmgeanntys. rFeipneaalltyab, tlehep alattset rsntsagoef PinVvColovcecsu frirnednicnegi naonryd erreptoeaptearbfoler mpavtaterrionus sosfi nPuVsCar rohcyctuhrmreinaccel aisnsi fiocradteior nt.oF ipgeurrfeor2mis vaaflroiowucsh asirntuosf oaurrrhfyotuhrm-sitaa gcelacslassifsiicfiactaiotino.n Fpigroucrees s2, wish iac hflcoowncsihsatsrto fotfh oeufor llfoowurin-sgtangien ecslatespsisf.icWateiopnr opvridoecetshse, dwehtaicilhs ocofneasicshtss otefp thine ftohlilsoswecintigo nn.ine steps. We provide the details of each step in this section. TThhee nniinnee ddiissttiinncctt sstteeppss:: 11.. NNooiissee ffiilltteerriinngg aanndd rreessaammpplliinngg ooff ssiiggnnaall;; 22.. DDiivviiddiinngg aa ssiiggnnaall iinnttoo 88 ss sseeggmmeennttss wwiitthh 33 ss oovveerrllaappppiinngg;; 33.. EExxttrraaccttiinngg fefeaatuturersesa nadntdr aitnraininginthge cthlaes sicfliaesrsfiofiredr isftoinr gduiissthiinnggubisehtwinege nbVetFwaenedn nVonF- VaFndse gnmoenn-VtsF; segments; Sensors2018,18,2090 4of25 Sensors 2018, 18, x FOR PEER REVIEW 4 of 25 4. ApplyinganRpeakdetectionalgorithmoneachnon-VFsegment; 4. Applying an R peak detection algorithm on each non-VF segment; 55.. EExxttrraaccttiinngg ffeeaattuurreess aanndd ddiissttiinngguuiisshhiinngg bbeettwweeeenn AAFF aanndd nnoonn--AAFF sseeggmmeennttss;; 66.. SSeeggmmeennttiinngg tthhee bbeeaattss iinn eevveerryy nnoonn--AAFF sseeggmmeenntt;; 77.. EExxttrraaccttiinngg ffeeaattuurreess ffoorr eevveerryy ssiinnggllee bbeeaatt aanndd ttrraaiinniinngg tthhee ccllaassssiiffiieerr ffoorr PPVVCC bbeeaatt ddeetteeccttiioonn;; 88.. AAssssiiggnniinngg aa llaabbeell ffoorr eevveerryys isninggleleb ebaetaot foefv eevryer8y s8o sf soifg nsiagl,nbaal,s ebdasoend tohne rtehseu lrtessoufltsst eopf 7s,teinp o7r,d ienr otroddeer tteoc tdPetVeCct oPcVcuCr orecncucerrpeantctee rpnast;terns; 99.. IIddeennttiiffyyiinngg NNSSRR,,b ibgiegmeminyin(yB G(B),Gtr)i,g etmrigineym(iTnGy) ,(qTuGa)d, riqgueamdirniyge(QmGin),yc o(uQpGle)t,, tcroipulpetl,eat,n dtrvipelnettr,i caunladr vteanchtryiccaurldaira t(aVchTy).cardia (VT). NNeexxtt,, wwee ddeessccrriibbee tthhee nniinnee sstteeppss,, iinn ddeettaaiill.. FFiigguurree 22.. OOuurr oovveerraallll pprroocceessss.. 22..11.. PPrreepprroocceessssiinngg//SStteepp 11 aanndd SStteepp 22 AAllll EECCGG ssiiggnnaallss aarree pprreepprroocceesssseedd aass ffoolllloowwss:: •• RReessaammppllee eeaacchh ssiiggnnaall wwiitthh aa ssaammpplliinngg ffrreeqquueennccyy ooff 330000 HHzz;; •• FFiilltteerr tthhee ssiiggnnaall wwiitthha at thhirirdd-o-ordrdeerrb bananddppasasssB uBtutettrewrworothrthfi lftielrtewr iwthitlho wlowcu tc-uotf-foffrfe fqrueeqnuceynocyf0 o.4f 0H.4z Hz and high cut-off frequency of 30 Hz to suppress baseline drift and reduce the high-frequency andhighcut-offfrequencyof30Hztosuppressbaselinedriftandreducethehigh-frequencynoise; noise; • Converttophysicalunits,normalizeeachsignaltozeromeanandunivariance; • Convert to physical units, normalize each signal to zero mean and univariance; • Segmentthesignalinto8sdatalengthsandthenshiftthedataby3s,asthisprovidesthebest • Segment the signal into 8 s data lengths and then shift the data by 3 s, as this provides the best performance[31]. performance [31]. Sensors2018,18,2090 5of25 2.2. Stage1/Step3: MethodologyofVFandNon-VFClassification WhiletherearemanyalgorithmsavailableforautomateddetectionoftheonsetofVFarrhythmia, there remains room for improvement of VF detection. We describe our approach to discriminate betweenVFandnon-VFsegmentsusingsixfeatures,ofwhichfourarederivedfromimage-based phase plot analysis, one is derived in the frequency domain, and the last reflects the nonlinear characteristicsofadatasegment. Thesefeaturesaredescribedindetailbelow. 2.2.1. Image-BasedPhasePlotforMorphologicalAnalysis Thephaseplot[32]isasimpletechniqueforcharacterizingnonlinearandnon-stationarydynamics of the signal. This is a two-dimensional plot, which unfolds the phase dynamics of the signal if a properly embedded time series in one axis is plotted against the current value of the signal in the otheraxis. Wederivedfourimage-basedfeaturesaccordingtothedistributionandthemorphology ofthephaseplot’strajectoriesforclassificationofVFandnon-VF(includingAF,NSR,andvarious othertypesofsinusarrhythmias). Inthisstudy,weconstructedtwophaseplotsforeachECGsegment. SupposewehaveasegmentS[s ,s ,s ,...,s ],wheres istheithsample. Inthefirstphaseplot,thex 1 2 3 n i coordinateconsistsofthecurrentvaluesofsi,whereastheycoordinatecontainssi+1. Thesecondplot visualizesarelationbetweensi versussi+5;thistimedelayof5sampleswaschosentofullyunfold thedynamicsofthedata. Thus,foreverydatasegment,twophaseplotswithtwodifferenttimelags arecomputed. Figure3showsarepresentativeNSRsegmentanditstwodifferenttime-laggedphase plots. AsegmentofVFanditstwodifferenttime-laggedphaseplotsareshowninFigure4. While NSRphaseplotsshoworganizeddistinctstructures,theVFphaseplotsshownot-well-definedand irregulardynamics,especiallywiththedelayof5samplesthatencompassnearlyallofthephaseplot. AsshowninFigures3and4,thelatterfigurereflectsthelessorganizedbehavioroftheVFsegmentin comparisontotheNSRsegment.Amongvarioustypesofarrhythmias,VFhasthemostirregularphase plot,characterizedbydisorganizedtrajectories. Phaseplotsofsinusarrhythmias,suchasBG,TG,QG, couplet,triplet,andVT(especiallynon-sustainedVT(NSVT),whichisdefinedastheoccurrenceof morethan3consecutivePVCs)aremoreorderedincomparisontoVF.Moreover,AFdatahavephase plotcharacteristicssimilartoanNSRsegment,asshowninFigure5. ToquantitativelydiscriminatebetweenVFandnon-VFfromthephaseplots,theyweresubsequently transformedintobinaryimages, whichconsistofpixelsof1s(whitepixels)and0s(blackpixels)[33]. AstrajectoriesofVFphaseplotsaremorerandomlydistributedinthephasemap,itisexpectedthatthe numberofwhitepixelsinthecorrespondingbinaryimageswillbemuchgreaterforVFthanfornon-VF segments.Inordertoquantifythedifferencesinthenumberofwhiteandblackpixels,wedefineSasthe totalnumberofpixelsineachimageandPasthenumberofcorrespondingwhitepixels(numberof1s). Aself-similarityindexiscalculatedbytakingaratioofbinarypixelsinthefirstphaseplot(r1 =P1/S1)and thesameratiointhesecondphaseplot(r2 = P2/S2)followedbysubtractionofthesetworatios(r2−r1). Theself-similarityindexisusedasoneofthesixfeaturesanditisdenotedasF1henceforth.Itisexpected thattheself-similarityindexvaluewillbesmallerforVFthanfornon-VF,asP(thenumberof1sinthe binaryimage)willbegreaterforthelatter,asseeninthebinaryimagesinFigures3eand4e.Thesecond feature,F2,representsthenumberoflinesinthephaseplot’sbinaryimagewhichareslanted45degrees alongthediagonalline. Specifically,weassignavalueof1toalinethatisslanted45degreesalongthe diagonallineforagivenpixel.Toensurethatalineissignificantlylarge,wehaveacriterionthatitmust havealengthgreaterthan20pixels. AsshowninFigure6,somelinesarelongerthanothers,butthe minimumlengthisgreaterthan20pixels. Thisthresholdwasdeterminedheuristically. TheVFphase plotwould,ingeneral,haveahighernumberofthese45-degreeslantedlinesincomparisonwiththeSR segments.F3reflectsthetotalnumberofpixelsthatareoccupiedbythelinesasdefinedforthefeatureF2. Forexample,F3representsthesummationofthelengthsofF2lines.Thefourthfeature,F4,isextracted through highlighting differences between the number of pixels that span the phase plot of a non-VF segmentincomparisonwiththenumberofpixelsthatcoverthephaseplotofaVFsegment.Becauseofthe disorganizedbehaviorofaVFphaseplot,theareaofwhitezoneintherelatedbinaryimageishigherthan Sensors 2018, 18, x FOR PEER REVIEW 6 of 25 Sensors2018,18,2090 6of25 a VF segment. Because of the disorganized behavior of a VF phase plot, the area of white zone in the related binary image is higher than the area of white zone in a non-VF phase plot’s binary image (for thinesatraenacoe,f cwohmitpeazroen Feiignuarenso 3nd-V aFnpdh 4adse). pAlost ’aslrbeinadaryy mimeangtieo(nfeodr inats ttahnec eb,ecgoimnnpianrge Foifg tuhriess s3edctainond, 4tdh)i.s Acshaalrraeacdteyrimsteicn wtioanse udsaetdt hfoerb eexgtirnancitninggo Ff1th, iwshseiccthio ins ,ntahmisecdh asrealcf-tseirmistiilcarwitays. uInse odrdfoerr etxot braectttienrg dFis1t,iwnghuicihsh isbnetawmeeedn snelofn-s-iVmFi laarnidty .VIFn, othrdee nretwo bfeetatteurrdei s(Fti4n)g iusi sdhetbeertmwieneendn boans-eVdF oann dthVesFe, tchheanraecwtefreisattiucrse, u(Fs4in)gis a dmeteorrmphinoeldogbiacsael dopoenrtahteosre, ccahlaleradc tmeroisrtpichso,luosginicgala fmilloinrpgh. ologicaloperator,calledmorphologicalfilling. Normal sinus rythm (NSR) 1.5 1 mv) 0.5 e( d u plit m 0 A -0.5 -1 0 1 2 3 4 5 6 7 8 Time (s) (a) Phase Plot 1 for NSR Phase Plot 2 for NSR 1 1 0.8 0.8 0.6 0.6 s(n+1) 00..24 s(n+6) 00..24 0 0 -0.2 -0.2 -0.4 -0.4 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 s(n) s(n) (b) (c) (d) (e) Figure 3. (a) An example NSR segment. (b) Phase plot of segment with a 1-sample lag. (c) Phase plot Figure3.(a)AnexampleNSRsegment.(b)Phaseplotofsegmentwitha1-samplelag.(c)Phaseplot of segment with a 5-sample lag. (d) Related binary image of (b). (e) Related binary image of (c). ofsegmentwitha5-samplelag.(d)Relatedbinaryimageof(b).(e)Relatedbinaryimageof(c). Sensors2018,18,2090 7of25 Sensors 2018, 18, x FOR PEER REVIEW 7 of 25 (a) 1) + n s( (b) (c) (d) (e) Figure 4. (a) An example VF segment. (b) Phase plot of segment with a 1-sample lag. (c) Phase plot of Figure4.(a)AnexampleVFsegment.(b)Phaseplotofsegmentwitha1-samplelag.(c)Phaseplotof segment with a 5-sample lag. (d) Related binary image of (b). (e) Related binary image of (c). segmentwitha5-samplelag.(d)Relatedbinaryimageof(b).(e)Relatedbinaryimageof(c). Sensors2018,18,2090 8of25 Sensors 2018, 18, x FOR PEER REVIEW 8 of 25 Atrial fibrillation (AF) 1.4 1.2 1 0.8 mv) 0.6 e( ud 0.4 plit m 0.2 A 0 -0.2 -0.4 -0.6 0 1 2 3 4 5 6 7 8 Time (s) (a) Phase Plot 2 for AF 1.2 1 0.8 0.6 0.4 s(n+1) s(n+6) 0.2 0 -0.2 -0.4 -0.6 -0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 s(n) (b) (c) (d) (e) Figure 5. (a) An example AF segment. (b) Phase plot of segment with a 1-sample lag. (c) Phase plot of Figure5.(a)AnexampleAFsegment.(b)Phaseplotofsegmentwitha1-samplelag.(c)Phaseplotof segment with a 5-sample lag. (d) Related binary image of (b). (e) Related binary image of (c). segmentwitha5-samplelag.(d)Relatedbinaryimageof(b).(e)Relatedbinaryimageof(c). SSeennssoorrss2 2001188,,1 188,,2 x0 9F0OR PEER REVIEW 99o off2 255 Sensors 2018, 18, x FOR PEER REVIEW 9 of 25 (a) (b) (a) (b) Figure 6. Binary image lines at 45 degrees in the phase plot (a) for an NSR segment (b) for a VF Figure 6. Binary image lines at 45 degrees in the phase plot (a) for an NSR segment (b) for a VF Figure6.Binaryimagelinesat45degreesinthephaseplot(a)foranNSRsegment(b)foraVFsegment. segment. segment. MMoorrpphhoolologgicicaallf iflliilnligng[3 4[3],4w], hwichhicihs ains iamn aigme-apgreo-cpersoscinegsstiencgh nteiqchune,iqmueea,n mseenancosm enpcaossminpgatshseinhgo ltehse Morphological filling [34], which is an image-processing technique, means encompassing the (haroelaeso f(adraerak opfi xdealrsks uprirxoeulsn dsuedrrboyunlidgehdte rbyo nleigs)hitnera obninesa)r yino ra gbrianyasrcya loeri mgraagyes.cHaleen icme,aagfete. rHsuenbtcrea,c atifntegr holes (area of dark pixels surrounded by lighter ones) in a binary or grayscale image. Hence, after tshuebftirrsatcatinndg stehceo nfidrspth aansde psleoctoinmda gpehsaosfee palcoht siemgmageenst ,oaf feilalicnhg soepgemraetniotn, ais failplipnlgie doptoertahteiornes uisl tainpgpilmiedag teo. subtracting the first and second phase plot images of each segment, a filling operation is applied to Sttheep srefsourlaticnqgu iismitiaogne.o Sfttehpiss ffeoart uarceqauriesiatisofno lolof wthsi:s feature are as follows: the resulting image. Steps for acquisition of this feature are as follows: ••• MMMaaakkkeee t tthhheee b bbiiinnnaaarrryyy i iimmmaaagggeee o oofff t tthhheee fi ffirirrsssttt p pphhhaaassseee p pplloloottt w wwiitiththh d ddeeellalaayyyo oofff1 11f fofoorrre eeaaaccchhhs sseeegggmmmeeennnttt( (B((cid:1828)(cid:1828)1(cid:2869)))) ••• MMMaaakkkeee t tthhheee b bbiiinnnaaarrryyy i iimmmaaagggeee o oofff t tthhheee s sseeecccooonnnddd p pphhhaaassseee p pplloloottt w wwiitiththh d ddeeellalaayyyo oofff5 55f fofoorrre eeaaaccchhhs sseeegggmmmeeennnttt(cid:2869)( (B((cid:1828)(cid:1828)2(cid:2870)))) ••• SSSuuubbbtttrrraaacccttt B(cid:1828)(cid:1828)2(cid:2870)f rfforrmoommB 1(cid:1828)(cid:1828)((cid:2869)B 1(((cid:1828)(cid:1828)−(cid:2869) −−B 2(cid:1828)(cid:1828))(cid:2870))) (cid:2870) ••• AAApppppplllyyy ttthhheee fi (cid:2870)ffliillllilininnggg o oopppe(cid:2869)eerraraattit(cid:2869)oiioonnno oon(cid:2870)nnB (cid:1828)1(cid:1828)(cid:2869)−−− (cid:1828)(cid:1828)B(cid:2870)2... (((IIInnn fffaaacccttt,,, ttthhhiiisss ooopppeeerrraaatttiiiooonnn ccchhhaaannngggeeesss cccooonnnnnneeecccttteeeddd bbbaaaccckkkgggrrrooouuunnnddd (cid:2869) (cid:2870) ppiixxeellss( (00ss))t toof foorreeggrroouunnddp pixixeelsls( 1(1ss),),s stotoppppininggw whheenni titr ereaacchheesso obbjejectctb boouunnddaarireies.s).) pixels (0s) to foreground pixels (1s), stopping when it reaches object boundaries.) ••• CCCooouuunnnttt t tthhheee n nnuuummmbbbeeerrr o oofff w wwhhhiititteee p ppiixixxeeellslss o oorrr t tthhheee n nnuuummmbbbeeerrr o oofff 1 11sss o oonnnt ththheeer rreeesssuuulltltitniinngggb bbiniinnaaarryryyi miimmaaagggeee... For example, as shown in Figure 7, after the filling operation (which assigns 1 to holes and any FFoorr eexxaammppllee,, aass sshhoowwnn iinn FFiigguurree 77,, aafftteerr tthhee fifilllliinngg ooppeerraattiioonn ((wwhhiicchh aassssiiggnnss 11 ttoo hhoolleess aanndd aannyy other regions which are surrounded by 1) and counting the final number of white pixels (number of ootthheerr rreeggiioonnss wwhhiicchh aarree ssuurrrroouunnddeedd bbyy 11)) aanndd ccoouunnttiinngg tthhee fifinnaall nnuummbbeerr ooff wwhhiittee ppiixxeellss ((nnuummbbeerr ooff 1s), the fourth feature is determined. Note that we used four connected background neighbors for the 11ss)),, tthhee ffoouurrtthh ffeeaattuurree iiss ddeetteerrmmiinneedd.. NNoottee tthhaatt wwee uusseedd ffoouurr ccoonnnneecctteedd bbaacckkggrroouunndd nneeiigghhbboorrss ffoorr tthhee filling operation. We combined these for image-based features from the phase plot with two more fifilllliinngg ooppeerraattiioonn.. WWee ccoommbbiinneedd tthheessee ffoorr iimmaaggee--bbaasseedd ffeeaattuurreess ffrroomm tthhee pphhaassee pplloott wwiitthh ttwwoo mmoorree features (a frequency domain feature and Shannon entropy), which are described in the next section, ffeeaattuurreess ((aa ffrreeqquueennccyy ddoommaaiinn ffeeaattuurree aanndd SShhaannnnoonn eennttrrooppyy)),, wwhhiicchh aarree ddeessccrriibbeedd iinn tthhee nneexxtt sseeccttiioonn,, in order to develop a new method for better discrimination between VF and non-VF segments. iinn oorrddeerr ttoo ddeevveelloopp aa nneeww mmeetthhoodd ffoorr bbeetttteerr ddiissccrriimmiinnaattiioonnb beettwweeeennV VFFa annddn noonn--VVFFs seeggmmeennttss.. (a) (b) (a) (b) Figure 7. Resulting images for acquisition of the fourth feature (a) for an NSR segment (b) for a VF FFiigguurree 77.. RReessuullttiinngg imimaaggeess fofor raacqcquuisiistiitoinon ofo fthteh efofuoruthrt hfeafetuatrue r(ea)( af)orf oarna NnSNRS sRegsmegemnte (nbt) (fbo)r fao rVaF segment. VseFgsmegemnte. nt. Sensors2018,18,2090 10of25 Sensors 2018, 18, x FOR PEER REVIEW 10 of 25 2.2.2. FrequencyDomainFeature 2.2.2. Frequency Domain Feature Thefifthfeature,F5,forclassificationofaVFversusnon-VFsegment,isacquiredviaanalyzing thesegmenTthien fitfhthe fferaetquuree,n Fc5y, dfoorm claaisnsi.fiScpateicoinfi coaf lal yV,Fw veeurssuesd naonp-oVwF esregsmpeecnttr,u ism actqouoirbetda ivniaa acnlaaslyszifiincga tion the segment in the frequency domain. Specifically, we used a power spectrum to obtain a featuretodistinguishbetweenVFandnon-VF.Figure8showssingle-sidedamplitudespectraforboth classification feature to distinguish between VF and non-VF. Figure 8 shows single-sided amplitude VFandnon-VFdatasegments. Eachdatasegmentconsistsof2400datapoints,andwechoseafast spectra for both VF and non-VF data segments. Each data segment consists of 2400 data points, and Fouriertransformdatalengthof2400sothatthefrequencyresolutionwas0.125Hz. Allamplitudes we chose a fast Fourier transform data length of 2400 so that the frequency resolution was 0.125 Hz. showninthisfigurearenormalizedtothemaximumamplitude. Inordertoquantifyeachsegment’s All amplitudes shown in this figure are normalized to the maximum amplitude. In order to quantify spectrum,wecalculatedthemeanspectralamplitudeovertheentireregion. each segment’s spectrum, we calculated the mean spectral amplitude over the entire region. AsshAows snhoinwFn iignu Friegu8r,et h8e, tmhee maneasnp sepcetrcatrlaal mamppliltituuddee ooff aa nnoonn--VVFF sesgemgmenetn ist issigsnigifniciafinctlayn htliyghheirg her thanftohraan VfoFr as eVgFm seengmt.eTnht.i sThisise issp eescpieaclilayllyo bovbivoiouussi nin tthhee ffrreeqquueennccyy raranngeg eofo 0f–05–05 H0zH. Cz.ouCnotuinngt itnheg the numbnerumofbferre oqfu ferenqcuieesncwiehs iwchhihcha vheavhei ghhigehrearm amplpiltiutuddeet thhaann tthhee mmeeaann vvalaulue,e i,t iits icslecalre athratth tahte tnhuemnbuemr ber offreqouf efrnecqiueesnwcihesic whhhicahv ehaavhe iag hhiegrhaerm apmliptluitduedeth thaannt hthee mmeeaann vvaalluuee isi sggreraetaetre frorfo thret hneonn-oVnF- VthFant hfoarn for VF segments. This can also be seen in Table 1 (feature F5) using the PhysioNet PhysioBank archive VFsegments. ThiscanalsobeseeninTable1(featureF5)usingthePhysioNetPhysioBankarchive datasets. These are described in Section 3. datasets. ThesearedescribedinSection3. Single-sided amplitude spectrum 1 non-VF 0.9 VF 0.8 0.7 0.6 S(f)|0.5 | 0.4 0.3 0.2 0.1 0 0 50 100 150 f(Hz) Figure 8. Single-sided amplitude spectra of a non-VF segment (blue) and a VF segment (red). Figure8.Single-sidedamplitudespectraofanon-VFsegment(blue)andaVFsegment(red). Table 1. Mean ± standard deviation for each feature of the VF detection classifier. Table1.Mean±standarddeviationforeachfeatureoftheVFdetectionclassifier. Features Units Mean ± STD of Non-VF Mean ± STD of VF FeatureFs1 UnRitastio Mean±0.S02T D± 0o.0f0N7 on-VF Me0a.0n4± ± 0S.T01D * ofVF F1 F2 RNautimobers 0.70.231± ±0 4.0.2027 29.00.10 4± ±100.0.051 ** F2 F3 NumPbixeerlss 3570.3.615± ± 43.9202.05 142091..051 ±± 78160..40 5* * F3 F4 PixPeilxsels 3500.6.057± ± 309.002.0 5 104.1021 .±5 0±.0748 *6 .4* F4 F5 PNixuemlsbers 202.90.706± ±0 3.022.26 1570..51 2± ±280.3.034 ** F5 Numbers 229.06±32.26 157.5±28.33* F6 Bits 0.60 ± 0.11 0.86 ± 0.05 * F6 Bits 0.60±0.11 0.86±0.05* * Denotes p < 0.05 based on Wilcoxon rank sum test, since data were found to be non-normal using *Denotesp<0.05basedonWilcoxonranksumtest,sincedatawerefoundtobenon-normalusingtheone-sample the one-sample Kolmogorov–Smirnov test. Kolmogorov–Smirnovtest. 2.2.3. Nonlinear Feature (Shannon Entropy (SE)) 2.2.3. NonlinearFeature(ShannonEntropy(SE)) The sixth feature, F6, is based on calculation of the Shannon entropy (SE) of the ECG signal. The TShEe [3si5x] tohf sfiegantaulr Se ,isF d6e,fiinsebda asse: d on calculation of the Shannon entropy (SE) of the ECG signal. TheSE[35]ofsignalSisdefinedas: n ∑ H(S) = − p log p (1) i 2 i i=1

Description:
Department of Biomedical Engineering, Faculty of Medicine, Shahid does not know in advance the type of arrhythmia a patient experiences. Math. Appl. 2008, 55, 680–690. [CrossRef]. 7. Zhang, L.; Guo, T.; Xi, B.; Fan, Y.; Wang
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.