ebook img

Automated knowledge acquisition using inductive learning : application to Mutual Fund classification PDF

228 Pages·1997·4.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Automated knowledge acquisition using inductive learning : application to Mutual Fund classification

AUTOMATEDKNOWLEDGEACQUISITION USINGINDUCTIVELEARNING: APPLICATIONTOMUTUALFUNDCLASSIFICATION By ROBERTCLAYTONNORRIS,JR. ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1997 Copyright1997 by RobertClaytonNorris,Jr. Tomywife,Suzanne andmydaughter,Christina ACKNOWLEDGEMENTS IwishtothankDr.GaryJ.Koehler,thechairmanofmycommittee,andDr. RobertC.Radcliffe,theexternalmember,whogavemetheirtime,support,guidance, andpatiencethroughoutthisresearch. DrKoehlerprovidedtheinitialconceptofthe researchtopicintheareaofartificialintelligenceandfinance.Dr.Radcliffeprovidedthe ideaofstudyingtheMorningstarratingsystem.IwishtothankDr.RichardElnickiand Dr.PatrickThompsonforservingonmycommitteeandfortheirhelpandadviceover theseyears. IwishtothankDr.H.RussellFoglerwhohasalwaysshownaninterestinmy research.IalsowouldliketothankDeanEarleC.TraynhamandDr.RobertC.Pickhardt oftheCollegeofBusinessAdministration,UniversityofNorthFlorida,fortheirsupport. Iwishtothankmywife,Suzanne,forherlove,assistance,andunderstandingasI workedonthismostimportantundertaking. Iwouldalsoliketothankmyauntand uncle,LillianandJackNorris,forencouragingmetocontinuemyeducation. Finally,I wouldliketothankmylatefatherforhisadviceandguidanceovertheyearsandmylate motherforherlove. 5 TABLEOFCONTENTS ACKNOWLEDGEMENTS iv ABSTRACT viii CHAPTERS 1 INTRODUCTION 1 1.1 Background 1 1.2 ResearchProblem 3 1.3 Purpose 5 1.4 Motivation 6 1.5 ChapterOrganization 6 2 LITERATUREREVIEW 8 2.1 HistoricalOverviewofMachineLearning 8 2.1.1 BriefHistoryofAIResearchonLearning 8 2.1.2 FourPerspectivesonLearning 10 2.2 AIandFinancialApplications 15 2.2.1 ExpertSystems 15 2.2.2 NeuralNetworksandFinancialApplications 17 2.2.3 GeneticAlgorithmsandFinancialApplications 27 2.3 TheC4.5LearningSystem 32 2.3.1 BriefHistoryofC45 33 2.3.2 C4.5Algorithms 37 2.3.3 LimitationsofC4. 44 2.3.4 C4.5FinancialApplications 45 2.4 LinearDiscriminantAnalysis 47 2.4.1 Overview 47 2.4.2 LimitationsofLDA 48 2.5 LogisticRegression(Logit) 49 2.6 Summary 50 DOMAINPROBLEM 51 3.1 OverviewofMutualFundRatingsSystems 51 3.11 Morningstar,Inc.Overview 54 3.1.2 MorningstarRatingSystem 55 33.11..34 RInevveisetwmeanntdMCarniatigceirssmUosfethoefMRoartniinnggsstarRatingSystem.5598 3.1.5 PerformancePersistenceinMutualFunds 61 3.1.6 ReviewofYearlyVariationofMorningstarRatings 64 3.2 ProblemSpecification 68 CLASSIFICATIONOFMUTUALFUNDSBYRATINGS 71 4.1 ResearchGoals 71 4.2 ResearchCaveats 71 4.3 ExampleDatabases 72 4.4 BriefOverviewoftheResearchPhases 72 4.5 Phase1-Classifying1993Funds 73 4.5.1 Methodology 73 4.5.2 Results 77 4.5.3 Conclusions 81 4.6 Phase2-1993DatawithDerivedFeatures 81 4.6.1 Methodology 81 4.6.2 ResultsfortheRegularDataset 84 4.6.3 ResultsfortheDerivedFeaturesDataset 87 4.6.4 Conclusions 89 4.7 Phase3-Comparing5-Starand3-StarClassifications 91 4.7.1 Methodology 91 4.7.2 Results 93 4.7.3 Conclusions 100 4.8 Phase4-CrossvalidationwithC4.5 101 4.8.1 Methodology 101 4.8.2 Results 103 4.8.3 Conclusions 104 4.9 OverallSummary 105 PREDICTIONOFMUTUALFUNDRATINGSAND RATINGSCHANGES 107 5.1 Phase5V-ePcrteodricOtvienrgTRawtoinYgesawristhaCommonFeature 109 5.1.1 Methodology 109 5.1.2 Results 110 5.1.3 Conclusions 112 5.2 Phase6-PredictingMatchedMutualFundRatingChanges 113 5.2.1 Methodology 113 5.2.2 Resultsfor1994DataPredicting1995Ratings 116 5.2.3 Resultsfor1995DataPredicting1996Ratings 125 5.2.4 Conclusions 133 5.3 Phase7-PredictingUnmatchedMutualFundRatings 134 5.3.1 Methodology 134 5.3.2 Resultsfor1994DataPredicting1995Ratings 135 5.3.3 Resultsfor1995DataPredicting1996Ratings 141 5.3.4 Conclusions 148 5.4 OverallSummary 148 6 SUMMARYANDFUTURERESEARCH 150 APPENDICES A DESCRIPTIONOFMUTUALFUNDFEATURES 155 B PHASE1CLASSIFICATIONFEATURES 161 C PHASE2CLASSIFICATIONFEATURES 165 D PHASE3CLASSIFICATIONFEATURES 174 E BESTCLASSIFICATIONTREESFROMPHASES1-4 185 REFERENCES 208 BIOGRAPHICALSKETCH 217 AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy AUTOMATEDKNOWLEDGEACQUISITION USINGINDUCTIVELEARNING: APPLICATIONTOMUTUALFUNDCLASSIFICATION By RobertClaytonNorris,Jr. December1997 Chairman:Dr.GaryJ.Koehler MajorDepartment:DecisionandInformationSciences Thisresearchusesaninductivelearningmethodologythatbuildsdecisiontrees, Quinlan'sC4.5,toclassifymutualfundsaccordingtotheMorningstarMutualFundfive classorstarratingsystemandpredictthemutualfundratingsoneyearinthefuture.In thefirstpartoftheresearch,IcomparetheperformanceofC4.5,LogisticRegressionand LinearDiscriminantAnalysisinclassifyingmutualfundsaccordingtotheMorningstar ratingsystem. Asthesizeofthetrainingsetincreases,sodoesC4.5'sperformance versusthetwostatisticalmethods. Overall,C4.5performedaswellasLogistic RegressioninclassifyingthemutualfundsandoutperformedLinearDiscriminant Analysis. ThispartoftheresearchalsoexploredtheabilityofC4.5toclassifyequity mutualfundsthatwereunratedbyMorningstar. Theresultssuggestedthat,withthe properfeaturesandamodificationtotheMorningstarfiveclassratingsystemtothree classes,unratedmutualfundscouldbeclassifiedwitha30%error. Anecdotalevidencesuggestedthatinvestorspurchasemutualfundsbyratingsand haveanexpectationthattheratingwillstaythesameorimprove Thesecondpartofthe researchusedatrainingsetofoneyeartoconstructadecisiontreewithC4.5topredict theratingsofmutualfundsoneyearinthefuture.Thetestingsetconsistedofexamples fromthepredictionyearinquestionandthepredictionswerecomparedtotheactual ratingsforthatyear. Theresultswerethat,withthenecessaryfeaturevector,five-star fundratingscouldbepredictedwith65%accuracy. Withamodificationtotherating systemchangingittothreestars,predictedmutualfundratingswere75%accurate. Thisresearchalsoidentifiesfeaturesthatareusefulfortheclassifyingmutual fundsbytheMorningstarratingsystemandforthepredictionoffundratings INCTHRAOPDTUECRTI1ON 1.1Background GlancingthroughacopyofTechnicalAnalysisofStocks&Commodities magazine,youfindagreatdealofinformationaboutartificialintelligence(AI)andthe selectionofstocksandcommoditiesforportfolios. IntheFebruary1997issueofthe magazine,theTraders'Glossaryevendefinesthetermneuralnetwork. However,itis difficulttofindscientificresearchaboutAIsystemsusedonWallStreetsinceusually theyareproprietaryandcouldprovideacompetitiveadvantagetotheinvestmentfirm. FiveyearsagoAIuseinfinancialapplicationswasjustbeginningtobenoticed. Forexample,thisstoryintheWallStreetJournalofOctober27,1992abouttheuseof artificialintelligencetoselectstocksforamutualfundportfolio: "Bradford Lewis, manager of Fidelity Investment Inc.'s Fidelity DisciplinedEquityFund,hasfoundawaytoout-performstandardindices using neural networksoftware. Aneural networkis anartificial intelligenceprogramthatcopiestheworkingsofthehumanbrain. The mPpoeuortrcu'easnlt5f0fuo0nrdst,thorwcehkeiiycnehdaerixsnv(reSusnt&nsiPning5ta0h0ne)d,sihasammseawibnoutnsaiionnveiesnsrgetsihtesaspientrdhefexorSbmtyaann2cd.ea3rtidnoaF5n.Yd6 1993...LewischeckswithanalystsatFidelitytodouble-checkhisresults, butsometimeswhenhebuysstockcontrarytothecomputer'sadvice,he losesmoney."(McGough,1992,p.CI) Academic research concerning mutual funds and artificial intelligence is relativelynewsinceonlythreestudieswerecitedintheliteraturefrom1986tothe present. Chiangetal.(1996)describedaneuralnetworkthatusedhistoricaleconomic

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.