ebook img

Automated Electronic Filter Design PDF

93 Pages·2017·1.271 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Automated Electronic Filter Design

Amal Banerjee Automated Electronic Filter Design Automated Electronic Filter Design Amal Banerjee Automated Electronic Filter Design AmalBanerjee AnalogElectronics Kolkata,India ISBN978-3-319-43469-8 ISBN978-3-319-43470-4 (eBook) DOI10.1007/978-3-319-43470-4 LibraryofCongressControlNumber:2016949738 ©SpringerInternationalPublishingSwitzerland2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland This book is dedicated to: Late Sivadas Banerjee Meera Banerjee Anuradha Datta A dear friend, mentor and guide Dr. Andreas Gerstlauer The two amazing physicists who taught me the basics of radio frequency: Dr. C. Fred Moore Dr. M.E.L. Oakes Contents 1 IntroductionandProblemStatement. . . . . . . . . . . . . . . . . . . . . . . . . 1 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 AutomatedElectronicFilterDesignScheme. . . . . . . . . . . . . . . . . . . . 5 2.1 TheFramework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 NormalizedButterworthFilter. . . . . . . . . .. . . . . . . . . . .. . . . . . 7 2.3 PracticalNormalizedLowPassButterworthFilter. . . . . . . . . . . . 10 2.4 NormalizedChebyshevLowPassFilter. . . . . . . . . . . . . . . . . . . . 11 2.5 NormalizedInverseChebyshevFilter. . . . . . . . . . . . . . . . . . . . . 14 2.6 NormalizedBesselFilter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.7 DenormalizingPrototypeFilterstoReal-WorldFilters. . . . . . . . . 16 2.7.1 FrequencyScaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7.2 ImpedanceScaling.. . . .. . .. . . .. . . .. . . .. . . .. . . .. . 17 2.8 FilterTransformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.8.1 LowPasstoHighPassFilter. . . . . . . . . . . . . . . . . . . . . . 18 2.8.2 LowPassFiltertoBandPassFilter. . . . . . . . . . . . . . . . . 18 2.9 AutomatedFilterDesignScheme. . . . . . . . . . . . . . . . . . . . . . . . 19 2.10 LowPasstoBandPassFilterConversionExample. . . . . . . . . . . 21 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 AutomatedElectronicFilterDesignAlgorithm/Scheme ImplementationandDesignExamples. . . . . . . . . . . . . . . . . . . . . . . . 27 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 AutomatedElectronicFilterDesignScheme. . . . . . . . . . . . . . . . 27 3.3 DesigningFilterswithNewScheme. . . . . . . . . . . . . . . . . . . . . . 36 3.4 Seventh-OrderLowPassButterworthFilter: SimplifiedSchemeImplementation. . . . . . . . . . . . . . . . . . . . . . . 37 3.5 Seventh-OrderLowPassChebyshevFilter: SimplifiedSchemeImplementation. . . . . . . . . . . . . . . . . . . . . . . 39 3.6 Eighth-OrderHighPassBesselFilter:Simplified SchemeImplementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 vii viii Contents 3.7 Eighth-OrderBandPassChebyshevFilter:Simplified SchemeImplementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.8 DesigningFilterswithNewScheme:Full-Blown Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.9 ButterworthLowPassFilter:CalculatedOrder 10andCutoffFrequency22.7MHz. . . . . . . . . . . . . . . . . . . . . . . 50 3.10 ChebyshevHighPassFilter:CalculatedOrder3 CutoffFrequency21MHzPassBandRipple0.45dB. . . . . . . . . . 52 3.11 ChebyshevBandPassFilter:SeriesConnection ofHighPassandLowPassFilters. . . . . . . . . . . . . . . . . . . . . . . . 56 3.12 EffectofNon-idealReactiveElementsonFilter BehaviorandPerformanceandDesignSpaceExploration. . . . . . 58 3.13 SPICE:ElectronicCircuitPerformanceEvaluation GoldStandard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4 HigherFrequencies(100’sofMHzto10’sofGHz):Physical ConstraintsandDistributedFilters. . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.1 Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2 High-FrequencyIssueswithDiscreteElementElectronic FilterFabricationandTransmissionLineFundamentals. . . . . . . . 70 4.2.1 LosslessTransmissionLines. . . . . . . . . . . . . . . . . . . . . . 72 4.2.2 LosslessTerminatedTransmissionLine. . . . . . . . . . . . . . 73 4.2.3 StubSynthesis:KeyEquations. . . . . . . . . . . . . . . . . . . . . 74 4.3 Richard’sTransformationandKuroda’sIdentities. . . . . . . . . . . . 75 4.4 DistributedElectronicFilterDesignScheme. . . . . . . . . . . . . . . . 76 4.5 TransmissionLineLosses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.6 DistributedElectronicFilterDesignExampleStepped ImpedanceLowPassFilter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5 SummaryandConclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 AppendixA:UsingtheAutomatedFilterDesignTool. . . . . . . . . . . . . . . 87 Chapter 1 Introduction and Problem Statement With the worldwide proliferation of wireless communication networks, precision analogsignalprocessingisbecomingmoreandmoreimportanteachday.Acrucial componentofanalogsignalprocessingissignalfiltering,thustheneedfordesign- ing/implementing electronic filters that accurately satisfy design specifications (cutoff frequency, pass/stop band ripple, bandwidth, group delay/phase shift, etc.). This book elaborates on an automated, efficient, and yet very powerful scheme for designing/implementing and evaluating/fine-tuning performance char- acteristicsofelectronic filters.Asalldigitalfiltersarederivedfromanalogfilters, thisschemecanbeextendedtothedigitalfilterdomaineasily. Inanutshell,thisschemecircumventssomekeybutcomplicated,manual(thus error-prone and time-consuming) steps of the traditional electronic filter design process.Easilyautomated(inthiscaseisanANSIClanguageprogram),theoutput isintheuniversallyusedcircuitsimulatorSPICEinputformat.Thefilterdesigner can then easily evaluate and fine-tune the performance characteristics of the new filter design. A brief overview of the traditional electronic filter design process is presentedtoexplainhowthisproposedschemeachievesitsgoal. Briefly, traditional filter design process consists of the following steps, in that order: 1. Basic loop equations are derived from Kirchhoff’s current/voltage laws (KCL/KVL). These loop equations are differential equations, sometimes nonlinear.Typically,thesedifferentialequationsareconvertedtomoretractable algebraicequations,usingLaplacetransforms,effectivelygoingfromthetimeto frequencydomain. 2. In the filter transfer function H(s), the Laplace transform of the unit impulse response of the filter is obtained by evaluating H(s) at s¼jw (in general, s¼ a+jwands¼jwrepresentapuresinusoidalinput).Forcalculationpurposes,it is the ratio of the output to the input voltage in the frequency domain. The transferfunctionisalmostalwaysinadenominator-numeratorpolynomialform. The goal is to determine the roots of these two polynomials in the complex ©SpringerInternationalPublishingSwitzerland2017 1 A.Banerjee,AutomatedElectronicFilterDesign, DOI10.1007/978-3-319-43470-4_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.