ebook img

Automated Dynamic Error Analysis Methods for Optimization of Computer Arithmetic Systems PDF

202 Pages·2015·1.63 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Automated Dynamic Error Analysis Methods for Optimization of Computer Arithmetic Systems

8 OUR IDENTITY LOGO MASTERBRAND LOGO The University of Sydney logo consists of PRIMARY LOGO CONFIGURATION Primary Logo two elements: the shield and the University of The primary logo is a principal Sydney wordmark. element of the University of Both elements have been visually updated to create Sydney visual identity system. It should be favoured and used, a new, modern logo. The stylised shield and the in this configuration, wherever contemporary serif typeface reinforce our history possible. and origins and nod to the now. The logo should be seen as a complete unit, with the shield and wordmark always appearing together. Only the logo artwork files can be used, including for mono and mono-reverse applications. Logo artwork SECONDARY LOGO Secondary Logo - Stacked Secondary Logo - Horizontal CONFIGURATIONS files have been created for all logo uses, and must not Stacked & Horizontal be created. To allow for flexibility in use The logo should not be redrawn, digitally manipulated and application, two other logo or altered. The following guidelines covering colour, treatments have been created: stacked and horizontal. They minimum size and clear space must be used when should only be used where applying the logo. message space and format considerations demand it. Stacked The stacked logo should only be used in vertically oriented, long and thin applications. Horizontal The horizontal loSgoC HshOoOulLd OF ELECTRICAL & INFORMATION ENGINEERING only be used in exaggerated COMPUTER ENGINEERING LABORATORY horizontal oriented spaces and applications. Automated Dynamic Error Analysis Methods for Optimization of Computer Arithmetic Systems MichaelFRECHTLINGB.E.(Hons) Athesissubmittedinfulfilmentof therequirementsforthedegreeof DoctorofPhilosophy 31stMarch2015 Formyparents Abstract Computerarithmeticisoneofthemoreimportanttopicswithincomputerscience andengineering. Theearliestimplementationsofcomputersystemsweredesigned toperformarithmeticoperationsandmostifnotalldigitalsystemswillberequired toperformsomesortofarithmeticaspartoftheirnormaloperations. Thisreliance on the arithmetic operations of computers means the accurate representation of real numbers within digital systems is vital, and an understanding of how these systemsareimplementedandtheirpossibledrawbacksisessentialinordertodesign and implement modern high performance systems. At present the most widely implementedsystemforcomputerarithmeticistheIEEE754FloatingPointsystem, while this system is deemed to the be the best available implementation it has severalfeaturesthatcanresultinseriouserrorsofcomputationifnotimplemented correctly. Lack of understanding of these errors and their effects has lead to real worlddisastersinthepastonseveraloccasions. Systemsforthedetectionofthese errorsarehighlyimportantandfast,efficientandeasytouseimplementationsof these detection systems is a high priority. Detection of floating point rounding errorsnormallyrequiresrun-timeanalysisinordertobeeffective. Severalsystems havebeenproposedfortheanalysisoffloatingpointarithmeticincludingInterval Arithmetic,AffineArithmeticandMonteCarloArithmetic. Whilethesesystemshave beenwellstudiedusingtheoreticalandsoftwarebasedapproaches,implementation ofsystemsthatcanbeappliedtorealworldsituationshasbeenlimitedduetoissues withimplementation,performanceandscalability. Themajorityofimplementations havebeensoftwarebasedandhavenottakenadvantageoftheperformancegains iv associatedwithhardwareacceleratedcomputerarithmeticsystems. Thisisespecially problematicwhenitisconsideredthatsystemsrequiringhighaccuracywilloften requirehighperformance. Theaimofthisthesisandassociatedresearchistoincrease understandingoferroranderroranalysismethodsthroughthedevelopmentofeasy touseandeasytounderstandimplementationsofthesetechniques. Acknowledgements Iwouldliketoexpressmysincerethanksandappreciationtomysupervisorand mentor,ProfessorPhilipH.W.Leong. Youradvice,encouragementanddirectionon myresearch,mythesisandmycareerhavebeeninvaluableoverthelastfouryears andIamextremelygratefultohavehadtheopportunitytoworkwithyou. Iwould also like to thank my associate supervisor, Professor Craig Jin, whose advice and assistancehas alsobeen invaluable. Iwould especiallylike tothank the pastand presentmembersoftheComputerEngineeringLaboratoryandCARLab,inparticu- larMr. NicholasFraser,Ms. CallaKlafas,Mr. DuncanMoss,Mr. StephenTridgell, Dr. NicolasEpain,Dr. AengusMartin,Dr. AbhayaParthyandDr. AndrewWabnitz. Yourabilitytoprovideassistance,adviceand,mostimportantly,distractionshave helpedinmakingthelastfouryearssurvivable. A special thanks to my family. Words cannot express how grateful I am to my parents,brothersandextendedfamilyforallofthesacrificesthatyou’vemadeon mybehalfandwhoseloveandsupporthavemadethisworkpossible. Iwouldalso liketothankallofmyfriendswhosupportedmeinmywork,andencouragedme tostrivetowardsmygoal. Statement of Originality Thisistocertifythattothebestofmyknowledge,thecontentofthisthesisismy own work and contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at the University of Sydney or any other educationalinstitution,exceptwheredueacknowledgmentismadeinthethesis. I certify that the intellectual content of this thesis is the product of my own work andthatalltheassistancereceivedinpreparingthisthesisandsourceshavebeen acknowledged,specifically: • The research direction and subject were suggested by Professor Philip H.W. Leong. • Advice and editing assistance for the preparation of this thesis has been providedbyProfessorPhilipH.W.Leong. • Thecillysource-to-sourcecompileraspresentedinChapter4wasdeveloped byProfessorPhilipH.W.Leong. • MonteCarloarithmeticwasfirstproposedbyProfessorD.S.ParkeratUCLA[141]. Contents Abstract iii Acknowledgements v StatementofOriginality vii ListofFigures xiii ListofTables xv ListofAcronyms xvii 1 Introduction 1 1.1 Motivation&Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 OrganizationoftheThesis . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 ComputerArithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 BinaryNumberSystem&IntegerArithmetic . . . . . . . . . . 6 2.2.2 BasicOperations . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 SignedRepresentationandComplementOperations . . . . . 11 2.3 FixedPointArithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 FormatandBasicNotation . . . . . . . . . . . . . . . . . . . . 14 2.3.2 BasicOperators . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Contents ix 2.3.3 OverflowandPrecisionLoss . . . . . . . . . . . . . . . . . . . 18 2.4 FloatingPointArithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.1 NormalizedValues . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.2 Exact&InexactValues . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.3 Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.4 Overflow&Underflow . . . . . . . . . . . . . . . . . . . . . . 25 2.5 IEEE-754FloatingPointStandard . . . . . . . . . . . . . . . . . . . . . 26 2.5.1 BasicOperators . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.2 SpecialValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5.3 Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5.4 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6 ErrorAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6.1 ArithmeticError . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.6.2 NumericalStability . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.6.3 Round-offError . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6.4 CatastrophicCancellation . . . . . . . . . . . . . . . . . . . . . 41 2.6.5 Static&DynamicErrorAnalysisMethods . . . . . . . . . . . 42 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 MonteCarloArithmetic(MCA) 55 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 MonteCarloMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2.1 HistoryandDevelopment . . . . . . . . . . . . . . . . . . . . . 56 3.2.2 DefinitionandImplementation . . . . . . . . . . . . . . . . . . 57 3.2.3 SamplingMethods . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3 QuasiMonteCarloMethods . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.2 MeasuringDiscrepancy . . . . . . . . . . . . . . . . . . . . . . 64 3.3.3 Pseudo-Randomv. Quasi-Random . . . . . . . . . . . . . . . . 67 x Contents 3.3.4 EffectonRateofConvergence. . . . . . . . . . . . . . . . . . . 68 3.3.5 RandomizedQuasi-MonteCarloMethods . . . . . . . . . . . 69 3.4 MonteCarloArithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4.1 ModellingInexactValues . . . . . . . . . . . . . . . . . . . . . 72 3.4.2 PrecisionBounding . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.4.3 RandomRounding . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4.4 VirtualPrecisiont . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4 MCALIB-AToolforAutomatedRoundingErrorAnalysis 81 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2 MCALIBImplementation . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2.1 Source-to-SourceCompilation . . . . . . . . . . . . . . . . . . 82 4.2.2 LibraryImplementationusingMPFR . . . . . . . . . . . . . . 83 4.2.3 MCALIBFeatures&Workflow . . . . . . . . . . . . . . . . . . 85 4.3 AnalysisofMCAResults . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.3.1 LinearRegressionAnalysis . . . . . . . . . . . . . . . . . . . . 90 4.3.2 AssumptionofNormalityandConditionsonResults . . . . . 92 4.4 Testing&CaseStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.1 ChebyshevPolynomials . . . . . . . . . . . . . . . . . . . . . . 92 4.4.2 SummationAlgorithm . . . . . . . . . . . . . . . . . . . . . . . 93 4.4.3 LinearAlgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 L-BFGSOptimization . . . . . . . . . . . . . . . . . . . . . . . 96 4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.5.1 ErrorDetectionandOptimizationofSampleAlgorithms . . . 98 4.5.2 Comparison of Single and Double Precision Floating Point Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.5.3 ComparisonofAlgorithmImplementations. . . . . . . . . . . 102 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Description:
to perform arithmetic operations and most if not all digital systems will be implemented system for computer arithmetic is the IEEE754 Floating Point system, have been proposed for the analysis of floating point arithmetic including Interval . 4 MCALIB - A Tool for Automated Rounding Error Analys
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.