ebook img

Automated Detection and Classification of Intracranial Aneurysms based on 3D Surface Analysis PDF

147 Pages·2010·4.69 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Automated Detection and Classification of Intracranial Aneurysms based on 3D Surface Analysis

Automated Detection and Classification of Intracranial Aneurysms based on 3D Surface Analysis Adissertationsubmittedby Alexandra Lauric Inpartialfulfillmentoftherequirements forthedegreeofDoctorofPhilosophyin Computer Science TUFTS UNIVERSITY August2010 ADVISER:EricL.Miller ii Abstract Intracranial aneurysms are localized, abnormal arterial dilations with a variable risk of rupture, whichcanleadtosubarachnoidhemorrhage(SAH),aconditionassociatedwithhighmorbidityand mortality. Themajorityofnon-traumaticSAHcasesarecausedbyrupturedintracranialaneurysms. Accurate detection can decrease a significant proportion of misdiagnosed cases. However, only a smallpercentofalldetectedincidentalaneurysmsproceedtoruptureandpreventivetreatmentcar- riesrisksofcomplications,thuscreatinganeedforaneurysmruptureriskstratificationtoolstohelp guidethetreatmentoftheseasymptomaticlesions. Thisresearchinvestigatesthetwomajorareasof intracranialaneurysmanalysis-aneurysmdetectionandruptureriskclassification. Firstamethod for automatic detection of intracranial aneurysms is proposed. Applied to the segmented cerebral vasculature,themethoddetectsaneurysmsassuspectregionsonthevasculartree,andisdesigned toassistdiagnosticianswiththeirinterpretations. Themethodisimagingmodalityindependentand wastestedonmagneticresonanceimaging,computedtomographyand3Dangiographydata. Sec- ond, a new approach to morphological analysis of the 3D shape of an aneurysm is presented as a differentiator of rupture risk status in cerebral aneurysms. The writhe number is introduced as a novelsurfacedescriptorwhichprovesusefulinbothdetectionandclassificationstudies. Inaddition tothewrithenumber,3Dshapedescriptorsbasedonsurfacecurvatureandcentroid-radiimodelare proposedandinvestigatedforruptureriskclassification. Thecombineduseofallthesenewfeatures yieldsverypromisingresultsforpredictingruptureriskinintracranialaneurysms. Inexperiments, theaneurysmdetectionmethodachieved100%sensitivity,independentofmodality. Dependingon theimagingmodality,therearebetween0.66and5.7falsepositivesperstudy; theworstcaseper- formanceiscomparabletothatofexistingdetectionresearch. Theclassificationmethodresultedin a∼20%increaseinpredictionaccuracy, comparedtoothercommonlyusedshapeindexes. These resultssupporttheutilityofwrithenumberaneurysmshapeanalysisasahighorderdescriptorwith potentialclinicaluseinintracranialaneurysmdetectionandruptureriskstratification. Acknowledgements IwouldliketothanktheTuftsUniversityDepartmentofComputerScienceforpro- viding an academic atmosphere that is stimulating, challenging, and supportive of its students. I am particularly grateful to my advisor, Eric Miller, for his guidance over the period we worked together. Prof. Miller achieved the perfect balance be- tween offering all his support, while at the same time allowing me to grow into an independent researcher. His high research standards inspired me to push my limits and thrive for excellence. I would like to thank the members of my dissertation committee, not only for their helpful suggestions in the final writing of this the- sis, but also for the constant inspiration they provided as researchers, teachers and mentors during my graduate years: Prof. Diane Souvaine for encouraging me to pursueaPhDdegree,Dr. SarahFriskenforintroducingmetotheworldofmedical imaging, Dr. Adel Malek for providing great research problems and acting as my medical research advisor, and Prof. Lenore Cowen for her advice and support at keytimesinmydoctoralstudies. IwouldliketothankmyfriendElenaforherhelpeditingthisthesis,butmostly for her support and friendship during our graduate years and beyond. I must thank my parents for compelling me to study Computer Science. As it turns out, they wereright! Finally,thisthesisisdedicatedtomyhusband,Petru. Hisnever-ending patience,encouragementandsupportmadethisworkpossible. ii Contents 1 Introduction 1 1.1 OverviewofAutomaticDetection . . . . . . . . . . . . . . . . . . 3 1.2 OverviewofRuptureStatusClassification . . . . . . . . . . . . . . 5 1.3 OutlineoftheThesis . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 BackgroundandRelatedWork 10 2.1 GeometryofCurvesandSurfaces . . . . . . . . . . . . . . . . . . 10 2.1.1 CurvesinthePlane . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 Surfacesin3-DimensionalSpace . . . . . . . . . . . . . . 11 2.1.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.4 WritheNumber . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 ProbabilityandStatistics . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 AneurysmDetectionandCharacterization . . . . . . . . . . . . . . 25 2.3.1 AneurysmDetection . . . . . . . . . . . . . . . . . . . . . 25 2.3.2 RuptureAnalysis . . . . . . . . . . . . . . . . . . . . . . . 27 3 TheWritheNumber 34 3.1 TheWritheNumberofSurfaces . . . . . . . . . . . . . . . . . . . 34 3.2 WritheNumberforAneurysmDetection . . . . . . . . . . . . . . . 36 3.2.1 TheWritheofaCylinder . . . . . . . . . . . . . . . . . . . 36 3.2.2 TheWritheofanExtrudedSurfaceAlongaParabola . . . . 37 iii 3.2.3 GeneralizationofWritheNumber . . . . . . . . . . . . . . 37 3.3 WritheNumberforRuptureStatusPrediction . . . . . . . . . . . . 38 3.3.1 Aphysicalinterpretationofsurfacewrithe . . . . . . . . . . 38 4 AutomatedDetectionofIntracranialAneurysmsusingtheWrithe NumberofSurfaces 41 4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.1 OverviewoftheDetectionAlgorithm . . . . . . . . . . . . 41 4.1.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1.3 MedialAxisDetection . . . . . . . . . . . . . . . . . . . . 42 4.1.4 ShortBranchesSelection . . . . . . . . . . . . . . . . . . . 42 4.1.5 LocalNeighborhoodModel . . . . . . . . . . . . . . . . . 43 4.1.6 WritheNumberComputation . . . . . . . . . . . . . . . . 45 4.1.7 FalsePositiveReduction . . . . . . . . . . . . . . . . . . . 45 4.2 ClinicalData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.1 3D-RA,MRAandCTA . . . . . . . . . . . . . . . . . . . 46 4.2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2.3 ExperimentalValidationofLocalNeighborhoods . . . . . . 49 4.3 AneurysmDetectionResults . . . . . . . . . . . . . . . . . . . . . 52 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5 RuptureStatusClassificationofIntracranialAneurysmsusing theWritheNumberofSurfaces 61 5.1 ClinicalData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.2.1 OverviewoftheClassificationAlgorithm . . . . . . . . . . 64 5.2.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.3 IsolationofAneurysms . . . . . . . . . . . . . . . . . . . . 65 iv 5.2.4 WritheNumberComputation . . . . . . . . . . . . . . . . 67 5.2.5 HistogramStatistics . . . . . . . . . . . . . . . . . . . . . 67 5.2.6 Classification . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.3 ClassificationResults . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3.1 RuptureStatusPrediction . . . . . . . . . . . . . . . . . . 68 5.3.2 SensitivitytoSegmentation . . . . . . . . . . . . . . . . . 73 5.3.3 SensitivitytoCuttingPlanesDefinition . . . . . . . . . . . 74 5.3.4 SyntheticDataAnalysis . . . . . . . . . . . . . . . . . . . 76 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6 RuptureStatusClassificationofIntracranialAneurysmsusing SurfaceCurvatureandtheCentroid-RadiiModel 89 6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.1.1 OverviewoftheClassificationAlgorithm . . . . . . . . . . 89 6.1.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.1.3 IsolationofAneurysms . . . . . . . . . . . . . . . . . . . . 90 6.1.4 SurfaceCurvatureandCentroid-RadiiComputation . . . . . 90 6.1.5 HistogramStatistics . . . . . . . . . . . . . . . . . . . . . 91 6.1.6 Classification . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.2 ClassificationResults . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.2.1 RuptureStatusPrediction . . . . . . . . . . . . . . . . . . 92 6.2.2 SensitivitytoSegmentation . . . . . . . . . . . . . . . . . 96 6.2.3 SensitivitytoCuttingPlanesDefinition . . . . . . . . . . . 97 6.2.4 SyntheticDataAnalysis . . . . . . . . . . . . . . . . . . . 99 6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7 ConclusionsandFutureWork 107 7.1 OngoingResearch . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 v 7.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Appendices 111 A WritheNumberAnalysis . . . . . . . . . . . . . . . . . . . . . . . 111 A.1 WritheNumberofaCylinder . . . . . . . . . . . . . . . . 111 A.2 WritheNumberofanExtrudedSurfaceAlongaParabola . . 112 Bibliography 115 vi List of Figures 2.1 Illustration of the curvature of elliptical surfaces. (a) The Gaussian curvatureofanellipticalsurfaceispositive. (b)Themeancurvature ofanellipticalsurfaceispositiveifthesurfaceislocallyconvexand negativeifthesurfaceislocallyconcave. . . . . . . . . . . . . . . . 15 2.2 Illustration of the curvature of hyperbolic surfaces. (a) The Gaus- sian curvature of a hyperbolic surface is negative. (b) The mean curvature of a hyperbolic surface can take both zero and non-zero values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Gaussianandmeancurvatureofamorecomplexsurface. (a)Gaus- sian curvature capture intrinsic geometric properties - elliptical or hyperbolic patches. (b) mean curvature captures extrinsic geomet- ricproperties-convexorconcaveregions. . . . . . . . . . . . . . . 16 2.4 A tubular neighborhood of a polygon 𝑃, represented as an offset manifold in the direction of the unit normal field of 𝑃. The offset distanceisboundedbyconstant 𝜖. . . . . . . . . . . . . . . . . . . 17 vii 2.5 Computingthecurvatureontriangularmeshes. (a)Completemodel of an aneurysm represented as a triangular mesh. (b) Detail on the mesh. The yellow disk surrounding vertex 𝑣 represents the neigh- borhood𝐵 overwhichthecurvatureat𝑣iscomputed. (c)Theangle between a pair of adjacent faces sharing an edge 𝑒 is computed as the angle between the normals at the two triangles. ∣𝑒 ∩ 𝐵∣ is the lengthof 𝑒∩𝐵 (between0and∣𝑒∣). . . . . . . . . . . . . . . . . . 19 2.6 (a) A curve crossing is considered positive if, in order to align two curve intervals, the upper interval is rotated counterclockwise with an angle between 0 and 𝜋. (b) A curve crossing is considered neg- ative if, in order to align two curve intervals, the upper interval is rotatedclockwisewithananglebetween0and 𝜋. . . . . . . . . . . 22 2.7 Thetrefoilknotcurvehas3crossingsandawrithenumberof3. (a) 3D view along x axis. (b) 3D view along the y axis. (c) 3D view alongthezaxis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.8 Interpretation of third and fourth central moments. (a) Normal dis- tributionwithmean𝜇. (b)Distributionwithpositiveskewness. The asymmetric tail extend out toward positive 𝑥 values. (c) Distribu- tion with negative skewness. The asymmetric tail extend toward negative 𝑥 values. (d) Flat distribution with large kurtosis is called platykurtic. (e) Sharp distribution with small kurtosis is called lap- tokurtic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 viii

Description:
for automatic detection of intracranial aneurysms is proposed. Applied to the differentiator of rupture risk status in cerebral aneurysms. The writhe number is
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.