ebook img

Automated Abdominal Tissue Segmentation of Multi-Contrast PDF

53 Pages·2006·0.63 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Automated Abdominal Tissue Segmentation of Multi-Contrast

Examensarbete 20p June 2006 Automated Abdominal Tissue Segmentation of Multi-Contrast Magnetic Resonance Images Tankyevych Olena 2 Abstract Automated Abdominal Tissue Segmentation of Multi-Contrast Magnetic Resonance Images Tankyevych Olena Abdominal fat and liver volume are of interest in studies of many diseases, e.g. cardiovascular, diabetes, and obesity. However, there have been only few works which developed automated or semi-automated abdominal tissue segmentation. Magnetic Resonance Imaging (MRI) is a medical imaging technology that provides rich information about soft body tissues. Properties of MRI can give complementary contrast information from these soft body tissues. Fuzzy c-means (FCM) clustering method assigns pixels of the image to dif- ferent clusters according to their distance to the cluster centres in a feature space. But the original FCM does not utilize any spatial information for the segmentation, which is of great importance in many cases, and especially in medical images. In this master thesis we have acquired data with different MRI sequences and combined them in order to form an intensity feature space, from which fat, muscle, and liver tissues were classified using both the original FCM algorithm and a FCM algorithm incorporating spatial information (sFCM). We have achieved promising results using a combination of three image sequences, despite the fact that we did not use image registration. sFCM performed better than the original FCM in tissue classification. Supervisor 1: Joel Kullberg Supervisor 2: Ingela Nyström Reviewer: Ewert Berntsson Examiner: Anders Jansson Department 1: Department of Oncology, Radiology and Clinical Immunol- ogy (ORKI), Section of Radiology, Uppsala University Department 2: Centre for Image Analysis, Uppsala University 3 4 Abstrakt på svenska Automatisk Segmentering av Abdominella Vävnader från Multispektral Magnetresonanstomografi Tankyevych Olena Abdominell fettvävnad och levervolym är av stort intresse i många studier av sjukdomar som kardioväskulära sjukdommar, diabetes och fetma. Det har dock bara gjorts ett fåtal studier som utvecklat en automatisk eller semi- automatisk segmentering av dessa abdominella vävnader. Magnetresonanstomografi (MRT) är en medicinsk bildalstrande teknik som ger rik information om mjuka kroppsvävnader. MRT’s egenskaper kan även ge kompletterande kontrastinformation från dessa mjuka vävnader. Klusteringsmetoden fuzzy c-means (FCM) delar in bildens pixlar i olika kluster beroende på deras avstånd till respektive klustercenter i en speciell egenskapsrymd. Den ursprungliga FCM-metoden använder dock inte någon spatiell information vid klustringen, vilket är av stor vikt. I detta examensarbete har vi samlat in data med hjälp av olika MRT- sekvenser och kombinerat dessa sekvens-data i avsikt att forma en egenskapsrymd från vilken vi klassificerat fett, muskel och levervävnad. Detta gjordes både med hjälp av den ursprungliga FCM-metoden och med en metod som inkluderar spatiell information i FCM-metoden (Spatiell FCM). Vi uppnådde lovande resultat genom att kombinera tre MRT-sekvenser trots att vi inte använde oss av någon registrering. Spatiell FCM visade sig prestera bättre än den ursprungliga FCM-metoden. Handledare 1: Joel Kullberg Handledare 2: Ingela Nyström Ämnesgranskare: Ewert Berntsson Examinator: Anders Jansson Avdelning 1: Institutionen för onkologi, radiologi och klinisk immunologi, Enheten för radiologi, Uppsala Universitet Avdelning 2: Centrum för Bild Analys, Uppsala Universitet 5 6 Contents Abstract......................................................................................................3 Abstrakt på svenska....................................................................................5 Contents.....................................................................................................7 1 Introduction.............................................................................................9 2 Magnetic Resonance Imaging.................................................................13 3 Digital images........................................................................................19 3.1 Basics..............................................................................................19 3.2 Segmentation..................................................................................19 4 Classification..........................................................................................23 4.1 Fuzzy c-means................................................................................23 4.1.1 FCM algorithm........................................................................24 4.2 Spatial FCM....................................................................................25 4.2.1 Spatial FCM algorithm.............................................................25 4.3 Cluster validity functions.................................................................26 5 Materials................................................................................................27 6 Methods.................................................................................................31 7 Results....................................................................................................35 8 Discussion and Conclusions....................................................................44 9 Acknowledgments..................................................................................48 10 References............................................................................................50 7 8 1 Introduction Image segmentation is one of the most important and difficult steps in analy- sis of digital image data, because it extracts the interesting objects for further processing, such as description or recognition. Its main aim is to divide an image into parts that correlate with objects or areas of the real world that are presented in the image [1]. Segmentation and classification in medical imag- ing are used for organ detection, tissue characterization, and volume deter- mination. Nowadays, medical images are obtained by different image acquisition mo- dalities, such as X-ray computerized tomography (CT), magnetic resonance imaging (MRI), single photon emission tomography (SPECT), positron emission tomography (PET), ultrasounds (US), etc. Radiographic techniques (conventional X-ray, or X-ray CT) use ionizing radiation. Contrast differences of body tissues in the images produced with these methods are often small, therefore are difficult to distinguish [2]. Ultrasound techniques do not use ionizing radiation, but offer relatively poor resolution and are limited in certain parts of the human body. MRI, however, does not use ionizing radiation and rely on a magnetization of protons for image production. It provides rich information about anatomi- cal structure, allowing quantitative clinical or pathological studies; the con- struction of computerized anatomical atlases; as well as pre- and intra- operative guidance for therapeutic involvement. MRI systems are able to produce multi-contrast images, which emphasize different significant properties of internal anatomical structures in the same body section with multiple contrasts. In clinical medicine, the use of multi-contrast MR images in tissue classifi- cation of normal and pathological tissue structures provides a helpful assis- tance [3]. There have been numerous works, which performed automated tissue segmentation of different parts of the human body [4-7]. Although there have been only few works, which have implemented automated or semi-automated abdominal tissue segmentation [6, 7]. 9 Excessive amounts of subcutaneous and visceral adipose tissues (SAT and VAT, respectively) in the abdomen (see Figure 1.1) are closely related to hyperlipidemia, diabetes, hypertension, and cardiovascular diseases [8, 9]. There have been substantial proofs on the critical role of the volume and distribution of the abdominal adipose tissue (AT). VAT has been proposed as the most important determinant of obesity-related metabolic abnormalities [10]. However, it is especially difficult to characterize the volume and distri- bution of VAT, because the soft abdominal tissues have grey-scale intensi- ties that are whether similar or overlap significantly. The study of Lee et al. in their work [11] have found that skeletal muscle (SM) values for a single image in a region at a level corresponding to the intervertebral disk between the 4th and 5th lumbar vertebrae (L4-L5) pro- vide useful estimates of whole-body SM. Figure1.1 Axial MR image slice of the abdomen. White area on the border of the body is the subcutaneous adipose tissue (SAT). White matter within the abdominal cavity around the internal organs is the visceral adipose tissue (VAT). There are various segmentation methods, such as a simple thresholding and more advanced techniques including methods based on neighbourhood in- formation such as the median, the variance, or the gradient. The majority of these methods, however, do not take advantage of the possible multidimen- sional information of the MRI data. MRI is inherently multidimensional as it provides different representations of the body tissues, basically depending on three MRI parameters: T1 (the spin-lattice relaxation time), T2 (the spin-spin relaxation time), and the PD (proton density) [12]. The segmentation of tissues obtained from multi-contrast MRI has been suc- cessfully applied in the past [12-18]. The analysis of such multidimensional images can be performed by using supervised or unsupervised classification methods. In supervised classification approaches, the region of interest (ROI) is defined by human interaction and the algorithm trains on the ROI 10

Description:
In this master thesis we have acquired data with different MRI sequences and combined them in .. The radio frequency (RF) coils in an MRI scanner are used for excitation of the nuclei and/or for .. They are designed to measure the overall
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.