ebook img

Austin Eliazar's doctoral dissertation PDF

156 Pages·2012·1.56 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Austin Eliazar's doctoral dissertation

Copyright (cid:0) c 2005 by Austin Eliazar All rights reserved DP-SLAM by Austin Eliazar DepartmentofComputerScience DukeUniversity Date: Approved: RonaldParr,Supervisor PankajAgarwal Larry Carin CarloTomasi Dissertationsubmittedinpartial fulfillmentofthe requirementsforthedegreeofDoctorofPhilosophy in theDepartment ofComputerScience in theGraduateSchoolof DukeUniversity 2005 ABSTRACT DP-SLAM by Austin Eliazar DepartmentofComputerScience DukeUniversity Date: Approved: RonaldParr,Supervisor PankajAgarwal Larry Carin CarloTomasi An abstractofadissertationsubmittedinpartial fulfillmentofthe requirementsforthe degree ofDoctorofPhilosophyinthe Departmentof ComputerSciencein theGraduateSchoolof DukeUniversity 2005 Abstract We present a novel, laser range finder based algorithm for simultaneous localization and mapping (SLAM) for mobile robots. SLAM addresses the problem of constructingan ac- curate map in real time despite imperfect information about the robot’s trajectory through theenvironment. Unlikeotherapproachesthatassumepredeterminedlandmarks(andmust deal with a resulting data-association problem) our algorithm uses the sensor range data directly to build metric occupancy maps. Our algorithm uses a particle filter to represent both robot poses and possible map configurations. By using a new map representation, which we call distributedparticle (DP) mapping, we are able to maintain and update hun- dreds of candidate maps and robot poses efficiently. Through careful implementation, we are able to achieve a time complexity which is linear in both the area observed and the number of particles used. Our technique contains essentially no assumptions about the environment yet it is accurate enough to close loops over 100m in length with crisp, per- pendicular edges on corridors and minimal or no misalignment errors, despite significant noiseandambiguity. iv Contents Abstract iv ListofTables ix ListofFigures x Acknowledgements xiv 1 Introduction 1 1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Previous Work 5 2.1 LocalizationOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 ParticleFilterReview . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 ParticleFilters forLocalization . . . . . . . . . . . . . . . . . . 6 2.2 LandmarkSLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Kalman FilterOverview . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Kalman FiltersforSLAM . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Variationson LandmarkSLAM . . . . . . . . . . . . . . . . . . 12 2.3 Hybrid TopologicalSLAM . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Map Representation 17 3.1 Occupancy Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Deterministic andStochasticOccupancyModels . . . . . . . . . . . . . 18 3.3 Laser Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Map RepresentationandObservationModel . . . . . . . . . . . . . . . . 20 3.5 Map Updates& ObservationModel . . . . . . . . . . . . . . . . . . . . 24 v 4 DP-SLAM 26 4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.1 Single Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.2 AncestryTrees . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.1.3 Maintainingthe ParticleAncestryTree . . . . . . . . . . . . . . 31 4.1.4 DP-MapRepresentation . . . . . . . . . . . . . . . . . . . . . . 36 4.1.5 SLAM usingaDP-Map . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.1 NaiveImplementation . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.2 InitialAnalysisofDP-SLAM . . . . . . . . . . . . . . . . . . . 40 4.2.3 EmpiricalEvaluationofDP-SLAM . . . . . . . . . . . . . . . . 43 5 LinearTime Complexity 53 5.1 Map DataStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Ancestrytreenodedatastructure . . . . . . . . . . . . . . . . . . . . . . 54 5.3 Map cachedatastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.4 Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.5 Deletions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.6 Summary ofComputationalComplexity . . . . . . . . . . . . . . . . . . 59 5.7 ImplementationandEmpiricalResults . . . . . . . . . . . . . . . . . . . 60 6 MotionModelsand ProposalDistributions 62 6.1 OtherProposalDistributionImprovements . . . . . . . . . . . . . . . . . 62 6.2 Previous CalibrationMethods . . . . . . . . . . . . . . . . . . . . . . . 64 6.3 Motion ModelDetails . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.4 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 vi 6.5 EmpiricalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7 Coalescence 81 7.1 EmpiricalBehavior ofCoalescence . . . . . . . . . . . . . . . . . . . . . 81 7.2 ImplicationsofCoalescence . . . . . . . . . . . . . . . . . . . . . . . . 84 8 HierarchicalSLAM 86 8.1 Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8.2 Hierarchical SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.2.2 Hierarchical Algorithm . . . . . . . . . . . . . . . . . . . . . . . 89 8.3 ImplementationandEmpiricalResults . . . . . . . . . . . . . . . . . . . 92 8.4 Extensions ofHierarchalSLAM . . . . . . . . . . . . . . . . . . . . . . 97 9 PracticalImprovements 98 9.1 Culling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 9.2 ImportantParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 9.2.1 ObservationModel . . . . . . . . . . . . . . . . . . . . . . . . . 100 9.2.2 Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 9.2.3 Map Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 101 9.2.4 Hierarchical Parameters . . . . . . . . . . . . . . . . . . . . . . 103 10 Summary of2-DDP-SLAM 104 11 3-DSLAM 106 11.1 Preliminary 3-DSLAMWork . . . . . . . . . . . . . . . . . . . . . . . 106 11.2 TechnicalIssues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 11.2.1 ProposalDistribution/ MotionEstimation . . . . . . . . . . . . . 108 vii 11.2.2 ObservationDependence . . . . . . . . . . . . . . . . . . . . . . 109 11.3 DataExplosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 11.3.1 3-DMappingwithVoxels . . . . . . . . . . . . . . . . . . . . . 111 11.3.2 Localization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 11.3.3 Map Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 11.4 ComputationComplexity . . . . . . . . . . . . . . . . . . . . . . . . . . 121 11.5 InitialResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 12 Future Directions 127 12.1 AlternateSensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 12.1.1 AdaptingBetterStereo Vision . . . . . . . . . . . . . . . . . . . 128 12.2 ProposalDistributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 12.2.1 AdaptiveParticleNumbers . . . . . . . . . . . . . . . . . . . . . 129 12.3 AlternativeMapRepresentations . . . . . . . . . . . . . . . . . . . . . . 130 12.3.1 QuadTrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 12.3.2 VariableMap Resolution . . . . . . . . . . . . . . . . . . . . . . 132 12.3.3 SoftUpdates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 12.3.4 ImprovedPriors. . . . . . . . . . . . . . . . . . . . . . . . . . . 133 12.3.5 Spheres ofInfluence . . . . . . . . . . . . . . . . . . . . . . . . 134 12.4 ActiveSLAM andExploration . . . . . . . . . . . . . . . . . . . . . . . 135 12.5 PrincipledLoopClosing . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Bibliography 138 Biography 142 viii List of Tables 5.1 Comparisonoftherunningtimesfortheoriginal,quadraticversionofDP- SLAM versusthe linearimplementation. . . . . . . . . . . . . . . . . . . 60 10.1 Summary ofComputationalComplexity . . . . . . . . . . . . . . . . . . 105 ix List of Figures 2.1 A plot of the robot’s actual motion, shown in grey, compared with the trajectorydescribedbythe odometry,showninblack. . . . . . . . . . . . 7 3.1 Effectofangleonnumber ofgridcellspenetrated. . . . . . . . . . . . . . 21 3.2 Effect of grid resolution on scan probabilities. If the grid squares all have the same density to the sensor, the scan on the left should have the same probability astheoneonthe right. . . . . . . . . . . . . . . . . . . . . . 22 4.1 ASLAMalgorithminprogress,demonstratingthedistributionofparticles. This illustrates the possibledifferencesbetweenthe mostlikely particleat a given time step, and the true pose. This partial map corresponds to the upperleft cornerofthe finalmapin Figure4.2. . . . . . . . . . . . . . . 28 4.2 The results of ignoring the joint distribution over maps and robot poses, and maintaining only a single map. The two sections of hallway at the bottom aresupposedtoline up. . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 An ancestrytreejustbeginning . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 Thechildren particlesare propagatedthroughtheparticlefilter. . . . . . . 33 4.5 Thechildparticles areresampledforthe nextgeneration . . . . . . . . . 34 4.6 Unnecessaryancestorparticles arepruned. . . . . . . . . . . . . . . . . . 34 4.7 Resamplingin thenextgeneration . . . . . . . . . . . . . . . . . . . . . 35 4.8 Irrelevant ancestorsare pruned,andthe columnon the leftis collapsed. . 35 4.9 SLAM usingasinglemap. . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.10 ADP-SLAMmap with9000particles. . . . . . . . . . . . . . . . . . . . 46 4.11 Deterministic occupancygridsfail tohandlethe difficultiesofC-Wing . . 47 4.12 Proper stochastic mapping can successfully close the loop in C-Wing, us- ing thesamenumberofparticles. . . . . . . . . . . . . . . . . . . . . . . 48 x

Description:
Computer Science in the Graduate School of. Duke University. 2005 . 5.2 Ancestry tree node data structure (c) The ancestry tree defines the how
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.