ebook img

Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites: Design of Tough, Transformation-Strengthened Composites and Structures PDF

841 Pages·2020·49.65 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites: Design of Tough, Transformation-Strengthened Composites and Structures

Springer Series in Materials Science 298 Horst Biermann Christos G. Aneziris   Editors Austenitic TRIP/ TWIP Steels and Steel-Zirconia Composites Design of Tough, Transformation-Strengthened Composites and Structures Springer Series in Materials Science Volume 298 Series Editors Robert Hull, Center for Materials, Devices, and Integrated Systems, Rensselaer Polytechnic Institute, Troy, NY, USA ChennupatiJagadish,ResearchSchoolofPhysical,AustralianNationalUniversity, Canberra, ACT, Australia Yoshiyuki Kawazoe, Center for Computational Materials, Tohoku University, Sendai, Japan Jamie Kruzic, School of Mechanical & Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia Richard M. Osgood, Department of Electrical Engineering, Columbia University, New York, USA Jürgen Parisi, Universität Oldenburg, Oldenburg, Germany Udo W. Pohl, Institute of Solid State Physics, Technical University of Berlin, Berlin, Germany Tae-Yeon Seong, Department of Materials Science & Engineering, Korea University, Seoul, Korea (Republic of) Shin-ichi Uchida, Electronics and Manufacturing, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan Zhiming M. Wang, Institute of Fundamental and Frontier Sciences - Electronic, University of Electronic Science and Technology of China, Chengdu, China TheSpringerSeriesinMaterialsSciencecoversthecompletespectrumofmaterials research and technology, including fundamental principles, physical properties, materials theory and design. Recognizing the increasing importance of materials science in future device technologies, the book titles in this series reflect the state-of-the-art in understanding and controlling the structure and properties of all important classes of materials. More information about this series at http://www.springer.com/series/856 Horst Biermann Christos G. Aneziris (cid:129) Editors Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites Design of Tough, Transformation-Strengthened Composites and Structures Editors HorstBiermann Christos G.Aneziris Institut für Werkstofftechnik Institut für Keramik, Glas- und TU Bergakademie Freiberg Baustofftechnik Freiberg, Sachsen,Germany TU Bergakademie Freiberg Freiberg, Sachsen,Germany ISSN 0933-033X ISSN 2196-2812 (electronic) SpringerSeries inMaterials Science ISBN978-3-030-42602-6 ISBN978-3-030-42603-3 (eBook) https://doi.org/10.1007/978-3-030-42603-3 ©TheEditor(s)(ifapplicable)andTheAuthor(s)2020.Thisbookisanopenaccesspublication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adap- tation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecreditto the originalauthor(s)and the source, providealink tothe CreativeCommonslicense andindicate if changesweremade. The images or other third party material in this book are included in the book’s Creative Commons license,unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthebook’s CreativeCommonslicenseandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthe permitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder. Theuse ofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc. inthis publi- cationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromthe relevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The fundamental development of new materials is an essential basis for scientific knowledge and economic success. This awareness motivates research into forward-lookingtechnologiesfortheproductionofresource-savingmaterials.New material properties, such as those made possible by composite materials, are of centralimportancefornew,durableproductsandsafetycomponents,particularlyin the areas of mobility and mechanical engineering. This motivates the vision of the marriageofmodernhigh-performancesteelsofthehigheststrengthandformability with damage-tolerant ceramics as a prime example of innovative manufacturing technologies for a new class of high-performance composites. Inconcreteterms,thisbookaimstocombinenewhigh-alloyTRIPsteels(TRIP: TRansformation-Induced Plasticity) with zirconium dioxide ceramics on powder metallurgical routes and via melt infiltration to form new composite materials, the “TRIP-Matrix Composites”. Groundbreaking new processes are used, such as the productionandcombinationofmetalloceramicpaper,hollowandsolidspheresand filigree honeycomb bodies, which enable excellent formability and a largely free geometric design of lightweight components for mobility applications. This book is the final publication of the Collaborative Research Centre (SFB 799) “TRIP-Matrix Composite—Design of tough, transformation-reinforced com- posites based on Fe and ZrO ”. The Collaborative Research Centre funded by the 2 German Research Foundation (DFG) ran from 2008 to 2020 at the Technische Universität Bergakademie Freiberg, Germany. The chapters contained in this book provide an overview of the most important results of the projects of the Collaborative Research Centre in the completed funding periods and at the same time present current, in some cases still unpublished results. The book is thematically divided into three sections, (i) the synthesis of TRIP-Matrix Composites, (ii) the characterisation of the materials produced and (iii)simulationandmodelling.Inthesethreesections,newandinnovativematerials and their synthesis pathways were explored. Powdermetallurgicalprocesseswereanimportantfocus ofseveralprojects,see Chaps.1and5–9.Anessentialcontributiontotheproductionofthenewcomposite materials is the development of new high-alloy austenitic stainless steels and steel v vi Preface powders with excellent properties, which serve as matrix for the composite mate- rials, as described in Chaps. 2 and 3, respectively. The melting metallurgical marriage of the steels with ZrO presented in Chap. 4 also resulted in new effects 2 and promising approaches. Finally, the joining of composite materials was also investigated, see Chap. 10. The characterisation of the new composites and the steel alloys is described in Chap. 11 with respect to the microstructure and in Chaps. 12–14 for the uniaxial, quasi-static,dynamic,fracturemechanical,cyclicaswellasmulti-axialmechanical properties. A special insight into the kinetics of the occurring deformation and damagemechanismsisprovidedbythemethodsofinsituinvestigationofthenew materials described in Chaps. 15 and 16. Corrosion research (Chap. 17) also plays an important role for later applications. An integral part of the description of the material properties are the projects for modellingtheprocesses(Chap.18)andthethermodynamicsofthephasesinvolved (Chap. 19), the coupled thermodynamic-mechanical modelling (Chap. 20) and the continuummechanicalandmulti-scalemodellingofthebehaviourofZrO (Chap.21) 2 and of TRIP steels (Chap. 22), as well as the micromechanical simulations (Chaps. 23 and 24). In these projects, new approaches for the description of materials and processes were developed and applied to the materials produced in the Collaborative Research Centre. As speaker and deputy speaker, we would like to thank all current and former members of the Collaborative Research Centre for their constant support. The successfulworkwouldnothavebeenpossiblewithoutthededicatedcooperationof allscientistswhoworkedonorsupportedtheprojects.Wewouldalsoliketothank other contributors, all technical and administrative staff as well as the countless students for their outstanding cooperation. Duetotheexcellentscientificwork,theCollaborativeResearchCentrehasbeen abletoproducethebasisformanyscientificqualificationtheses,fromhabilitations anddoctoratestostudenttheses.Inthisway,numerousscientificcareershavebeen establishedover12yearsandmanygraduateshavebeenshapedscientifically.This young talent work was also promoted within the framework of a graduate school, which taught many soft skills in addition to professional qualifications. Wewouldalsoliketothankthepublicrelationsteam,whichmadethescientific results available to a broad public and thus made an important contribution to the reputation of the Technische Universität Bergakademie Freiberg. This public relationsworkhasalsointerestedmanystudentsinthespecialresearchareasofthe Collaborative Research Centre and thus drawn their attention to the university’s courses of study. We would also like to highlight the support of the industrial board. Our special thanks go to the German Research Foundation for the trust it has placed in us and for funding (project number: 54473466), in particular to E. Effertz, S. Isernhagen and R. Nickel from the Collaborative Research Centres Department, F. Fischer, B. Jahnen and X. Molodova from the Materials Science and Engineering Department and Mrs. Hammel and Mrs. C. Niebus from the administration centre. We are also deeply indebted to all the experts who have Preface vii followed our work with interest as referees as well as to the members of the Senate Committee of the German Research Foundation. Finally,wewouldliketothankMrs.A.BeierandP.Michel,whoseworkinthe office of the Collaborative Research Centre ensured the smooth running of all financial aspects and the organisation of all events. Freiberg, Germany Horst Biermann Christos G. Aneziris Contents 1 Ceramic Casting Technologies for Fine and Coarse Grained TRIP-Matrix-Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Claudia Heuer, Marie Oppelt and Christos G. Aneziris 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Experimental Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Raw Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Sample Preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Characterization of the Composite Materials . . . . . . . . 8 1.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 DevelopmentofTRIP-MatrixCompositesviaPowder Metallurgy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.2 Development of TRIP-Matrix Composites via Metal Melt Infiltration of Ceramic Preforms . . . . . . . . . . . . . 28 1.3.3 Development of Ceramic Matrix Composites via Powder Metallurgy . . . . . . . . . . . . . . . . . . . . . . . . 32 1.3.4 Development of Ceramic Components Using Alternative Technologies . . . . . . . . . . . . . . . . . . . . . . 34 1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2 Design of High Alloy Austenitic CrMnNi Steels Exhibiting TRIP/TWIP Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Qiuliang Huang, Marco Wendler, Javad Mola, Andreas Weiß, Lutz Krüger and Olena Volkova 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2 Experimental Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.3 Austenitic CrMnNi Cast Steels . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3.1 Constitution and Special Methods . . . . . . . . . . . . . . . . 45 2.3.2 Initial Microstructures of 16-7-3/6/9 Steels. . . . . . . . . . 45 ix x Contents 2.3.3 Mechanical Properties of 16-7-3/6/9 Steels. . . . . . . . . . 47 2.3.4 Conclusions for the 1st Generation Steels. . . . . . . . . . . 49 2.4 Austenitic CrMnNi–C–N Cast Steels . . . . . . . . . . . . . . . . . . . . 50 2.4.1 Constitution and Special Methods . . . . . . . . . . . . . . . . 50 2.4.2 Initial Cast Microstructures of the Steel Series . . . . . . . 52 2.4.3 Austenite $ a′-Martensite Transformation Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.4.4 Mechanical Properties of Cr15NC10.X Steel Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.5 Mechanical Properties of Cr19NC15.X Steel Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.4.6 Conclusions for the 2nd Generation Steels . . . . . . . . . . 60 2.5 Q&P Processing of Austenitic CrMnNi-C-N Cast Steels . . . . . . 61 2.5.1 Constitution and Special Methods . . . . . . . . . . . . . . . . 62 2.5.2 Q&P Processing of Cr15NC12.16 Steel. . . . . . . . . . . . 63 2.5.3 QDP Processing of Cr19NC14.16 Steel. . . . . . . . . . . . 67 2.5.4 Conclusions for the 3rd Generation Steels . . . . . . . . . . 71 2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3 TailoringofThermophysicalPropertiesofNewTRIP/TWIPSteel Alloys to Optimize Gas Atomization . . . . . . . . . . . . . . . . . . . . . . . . 77 Iurii Korobeinikov, Humberto Chaves and Olena Volkova 3.1 Surface Tension and Density of the TRIP/TWIP Steels. . . . . . . 78 3.2 Control of Atomization by the Thermophysical Properties of the Atomized Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.2.1 InvestigationoftheEffectofSurfaceTensiononInert Gas Atomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.2.2 Effect of the Viscosity of Liquid Metal on the Inert Gas Atomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3 Density of Nitrogen Alloyed Steels . . . . . . . . . . . . . . . . . . . . . 97 3.3.1 Development of Density Measurement Cell . . . . . . . . . 97 3.3.2 Atomization of Nitrogen Alloyed Steels. . . . . . . . . . . . 101 3.4 Analysis of Gas Atomization Process. . . . . . . . . . . . . . . . . . . . 103 3.4.1 Temperatures of the Particles . . . . . . . . . . . . . . . . . . . 104 3.4.2 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.4.3 Velocity of the Particles . . . . . . . . . . . . . . . . . . . . . . . 106 3.4.4 New Geometry and a Set-Up for an Inert Gas Atomization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.