ebook img

Auction-based Resource Allocation for Multi-relay Asynchronous Cooperative Networks PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Auction-based Resource Allocation for Multi-relay Asynchronous Cooperative Networks

AUCTION-BASED RESOURCE ALLOCATION FOR MULTI-RELAY ASYNCHRONOUS COOPERATIVE NETWORKS JianweiHuang,Zhu Han, MungChiang,and H.VincentPoor ABSTRACT relays. Precisedefinitionsoffairnessandefficiencywillbegiven Resourceallocationisconsideredforcooperativetransmissionsin inSection2. Inbothauctions,eachuserdecides“whentousere- multiple-relaywirelessnetworks. Twoauctionmechanisms,SNR lay”basedonalocallycomputablethresholdpolicy.Thequestion auctions and power auctions, are proposed to distributively co- of“howtorelay”isansweredbyasimpleweightedproportional 8ordinate the allocation of power among multiple relays. In the allocationamonguserswhousetherelay. 0SNR auction, a user chooses the relay with the lowest weighted In our previous work [4], we have proposed similar auction 0 price. Inthepowerauction,ausermaychoosetousemultiplere- mechanisms for a single-relay cooperative communication net- 2 lays simultaneously,dependingon the network topologyand the work, where users can achieve the desired auction outcomes if nrelays’prices.Sufficientconditionsfortheexistence(inbothauc- theyupdatetheirbidsin a synchronousmanner. Thispapercon- a tions) and uniqueness(in the SNR auction) of the Nash equilib- siders the more general case where there are multiple relays in J rium are given. The fairness of the SNR auction and efficiency thenetworkwithdifferentlocationsandavailableresources. The 0 of the power auctionare furtherdiscussed. It is also proventhat existence,uniqueness,andpropertiesoftheauctionoutcomesare 2 users can achieve the unique Nash equilibrium distributively via verydifferentfromthesingle-relaycase. Moreover,weshowthat ]bestresponseupdatesinacompletelyasynchronousmanner. userscanachievethedesirableauctionoutcomesinacompletely T Keywords:WirelessNetworks,RelayNetworks,AuctionThe- asynchronousmanner,whichismorerealisticinpracticeandmore I .ory,PowerControl,ResourceAllocation difficulttoprove. Duetothespacelimitations,alltheproofsare s c omittedinthisconferencepaper. 1. INTRODUCTION [ 1 Cooperativecommunication(e.g.,[1])takesadvantageofthebroad- 2. SYSTEMMODELANDNETWORKOBJECTIVES vcast nature of wireless channels, uses relay nodes as virtual an- Asaconcreteexample,weconsidertheamplify-and-forward(AF) 7tennas, and thus realizes the benefits of multiple-input-multiple- cooperative communication protocol in this paper. The system 9output(MIMO)communicationsinsituationswherephysicalmul- 0 diagramis shownin Fig. 1, where there is a set = (1,...,K) tipleantennasaredifficulttoinstall(e.g.,onsmallsensornodes). K 3 ofrelaynodesandaset =(1,...,I)ofsource-destinationpairs. Althoughthephysicallayerperformanceofcooperativecommu- I . Wealsorefertopairiasuseri,whichincludessourcenodes and 1nicationhasbeenextensivelystudiedinthecontextofsmallnet- i 0works, there are still many open problems of how to realize its destinationnodedi. 8 For each user i, the cooperativetransmission consists of two fullbenefitinlarge-scalenetworks. Forexample,tooptimizeco- 0 phases. In Phase 1, source s broadcasts its information with :operativecommunicationin largenetworks, we needto consider i v power P . The received signals Y and Y at destination globalchannelinformation(includingthatforsource-destination, si si,di si,rk i d andrelayr aregivenbyY = P G X +n and Xsource-relay, and relay-destination channels), heterogeneous re- i k si,di si si,di si di Y = P G X +n ,whereX isthetransmittedin- rsource constraints among users, and various upper layer issues si,rk si si,rk si rk p si a formationsymbolwithunitenergyatPhase1atsources ,G (e.g.,routingandtrafficdemand). Recentlysomecentralizednet- p i si,di andG arethechannelgainsfroms todestinationd andre- work controlalgorithms(e.g., [2,3])have beenproposedforco- si,rk i i layr ,respectively,andn andn areadditivewhiteGaussian operativecommunications,buttheyrequireconsiderableoverhead k di rk noises. Withoutlossofgenerality,weassumethatthenoiselevel forsignalingandmeasurementanddonotscalewellwithnetwork is the same for all links, and is denoted by σ2. We also assume size. This motivates our study of distributed resource allocation that the transmission time of one frame is less than the channel algorithmsforcooperativecommunicationsinthispaper. coherencetime.Thesignal-to-noiseratio(SNR)thatisrealizedat Inthispaper,wedesigntwodistributedauction-basedresource allocationalgorithmsthatachievefairnessandefficiencyformultiple- destinationdi inPhase1isΓsi,di = PsiGσ2si,di. relaycooperativecommunicationnetworks. Herefairnessmeans In Phase 2, user i can use a subset of (including all) relay anallocationthatequalizesthe(weighted)marginalrateincrease nodesto helpimproveitsthroughput. If relayr isusedbyuser k among users who use the relay, and efficiency means an alloca- i, r will amplify Y and forward it to destination d with k si,rk i tion that maximizesthe total rate increase realized by use of the transmittedpowerP . Thereceivedsignalatdestinationd is rk,di i Y = P G X +n′ ,whereX =Y /Y J. Huang is with the Department of Information Engineering, the Chinese rk,di rk,di rk,di rk,di di rk,di si,rk | si,rk| is the unit-energy transmitted signal that relay r receives from University of Hong Kong, Shatin, NT, Hong Hong. Z. Han is with the Elec- k p tricalandComputerEngineeringDepartment, BoiseStateUniversity, Boise,ID, sourcesi in Phase 1, Grk,di is thechannelgainfromrelay rk to USA.M.ChiangandH.V.PoorarewiththeDepartmentofElectricalEngineering, destination d , and n′ is the receivernoise in Phase 2. Equiva- PrincetonUniversity,Princeton,NJ,USA.TheworkofJ.Huangissupportedby i di DirectGrantoftheChineseUniv.ofHongKongunderGrant2050398.Thiswork lently,wecanwriteY = √Prk,diGrk,di(√PsiGsi,rkXsi,di+nrk)+ ofH.V.PoorwassupportedbytheU.S.NationalScienceFoundationunderGrants rk,di √PsiGsi,rk+σ2 ANI-03-38807andCNS-06-25637 n′di.TheadditionalSNRincreaseduetorelayrk atdiis Hereq ’saretheprioritycoefficientsdenotingtheimportanceof ik Destination 1 each user to each relay. When q = 1 for eachi, all userswho Source 1 ik userelayr havethesamemarginalutilityc ,whichleadstostrict k k Relay 1 fairnessamongusers.Inthespecialcasewhereusersaresymmet- ricandonlyusethesamerelayr ,thefairnessmaximizingpower Relay 2 k allocationleadstoaJain’sfairnessindex[5]equalto1. However, thedefinitionoffairnesshereismoregeneralthantheJain’sfair- Source 2 Destination 2 nessindex. NoticethatafairallocationisParetooptimal,i.e.,no Sourcei Xsi,di Phase 1 Ysi,di Dceosmtinbaintiionng i Rsi,rk,di aunseort’hserrautesecra.nbefurtherincreasedwithoutdecreasingtherateof Xsi,rk Phase 1 Phase 2 Yrk,di Since △Ri(Pr,di) is non-smooth and non-concave (due to themaxoperation),itiswellknownthatProblems(4)and(5)are Y X si,rk Relay rk rk,di NP hard to solve even in a centralized fashion. Next, we will propose two auction mechanisms that can solve these problems Fig.1. SystemModelforCooperationTransmission undercertaintechnicalconditionsinadistributedfashion. 3. AUCTIONMECHANISMS P P G G SNR = rk,di si rk,di si,rk . (1) △ ik σ2(P G +P G +σ2) An auction is a decentralized market mechanism for allocating rk,di rk,di si si,rk resources without knowing the private valuations of individual Thetotalinformationrateuseriachievesattheoutputofmaximal usersinamarket. Auctiontheoryhasbeenrecentlyusedtostudy ratiocombiningis various wireless resource allocation problems (e.g., time slot al- Rsi,di(Pr,di)= W log2(1+1Γsi,di + k+△1SNRik). (2) wloecaptiroonpo[s6e] tawnod pauocwtieorncomnetcrohlan[7is]misnfcoerllaulllaorcanteitnwgorreksso).urcHeeirne k∈K {Prk,di>P0} a multiple-relay network. The rules of the two auctions are de- HerePr,di = (Prk,di,∀k ∈PK)isthetransmissionpowervector scribedbelow,withtheonlydifferencebeinginpaymentdetermi- of all relays to destination d , W is the total bandwidth of the i nation. system,and1 istheindicatorfunction.Equation(2)includesa {·} Initialization: Each relay r announces a positive reserve specialcasewhereuseridoesnotuseanyrelay(i.e.,P = 0 k rk,di • bid β > 0 and a price π > 0 to all users before the forallk ),inwhichcasetherateisWlog (1+Γ ). The k k ∈ K 2 si,di auctionstarts. denominatorin(2)modelsthefactthatrelaytransmissionsoccupy system resource (e.g., time slots, bandwidth, codes). We write Bids: Each user i submits a nonnegative bid vector bi = • Rsi,di(Pr,di)to emphasizethatPr,di isthe resourceallocation (bik,∀k ∈K),onecomponenttoeachrelay. decision we need to make, and it is clear that R dependson Allocation:Eachrelayr allocatestransmitpoweras si,di • k othersystemparameterssuchaschannelgains. b ik eachWuesearsis.uEmaecthhraetltahyersohuarcseatfiraxnesdmtoistasilotnrapnosmweisrsPiosnipisowfixeerdPfor, Prk,di = j∈Ibjk+βkPrk,∀i∈I. (6) k rk and can choosethe transmission powervectorPrk,d , (Prk,d1, Payments: UseripayPsC = π q SNR inanSNR ...,Prk,dI)fromthefeasibleset • auctionorC = π Pi inkapkowike△rauctioikn. i k k rk,diP Thetwoauctionmechanismsthatweproposearehighlydistributed, Prk ,(Prk,d(cid:12) Prk,di ≤Prk,Prk,di ≥0,∀i∈I). (3) since each user only nePed to knowthe public system parameters pFoinwaellryo,fdaelfilnreelaPyrs(cid:12)(cid:12)(cid:12)(cid:12),tXdoia=ll(uPserrks’,dd,e∀sktin∈atKio)nsto. Tbheetrheesotruarncsemailslosicoan- a(in.ed.,GWsi,,dσi)2aannddthPerkchfaonrnaelllgrealianyskw)i,thlorcealalyinsf(oGrmsia,rtkioann(di.eG.,rkP,dsii for each relay r , which can be obtained through channel feed- tiondecisionweneedtomakeisthevalueofPr,d. back).Therelayksdonotneedtoknowanynetworkinformation. From a network designer’s point of view, it is important to Abiddingprofileisdefinedasthevectorcontainingtheusers’ consider both efficiencyand fairness. An efficient power alloca- bids, b = (b ,...,b ). The biddingprofileof user i’s opponents tionPerf,fidciencymaximizesthetotalrateincreasesofallusers,i.e., is defined as1b−i =I (bj, j =i), so that b = (bi;b−i). User i choosesb tomaximizeits∀pa6yoff Iwunshemeoraefnr△yelaRcyaiss(e△Ps{,RrPa,indrki(e),Pdfd∈fimrePc,dnaireioxk)nt,∀et=ksa∈ltmlhKoea}cxarXiat∈{itoIeRn△isnidR,cidrsiiec(a(rPiPsmerrio,n,ddfaiiu)t)es−,seraRgiasdii,nudseit(tuo0s)t(eh4,re0s)}. tHhUeartiet(hπbei;=vbai−(luπi,ekπs,∀o)fk=t∈h△eKRre)isie(sPrtvhere,bdpiird(isbceiβ;sbo’−sfiad)lo)l−rneolCatyaisf(.fbeIict;tcbat−hnie,brπee)ssoh.uowr(c7ne) k whoarefarawayfromtherelay. Toavoidthis, we alsoconsider allocation,thuswecansimplychooseβ =1forallk. k a fairpowerallocationPfra,idr, whereeachrelayrk solvesthefol- ThedesirableoutcomeofanauctioniscalledaNashEquilib- lowingproblem rium(NE),whichisa biddingprofileb∗ suchthatnouserwants Prkm,da∈xPrk i Prk,di, s.t.∂△∂R(△i(S△NRSiNkR)ik) =ckqik·1{Prk,di>0},∀i∈I. todeviateunilaterally,i.e., X (5) Ui b∗i;b∗−i,π ≥Ui bi;b∗−i,π ,∀i∈I,∀bi ≥0. (8) (cid:0) (cid:1) (cid:0) (cid:1) Defineuseri’sbestresponse(forfixedb andpriceπ)as Theorem2 InanSNRauctionwithmultiplerelays,auniqueNE −i existsifπ >πs foreachk. k k,th Bi(b−i,π)= bi bi =argmaxUi ˜bi;b−i,π , (9) Finally let us consider the property of the NE. For a single- (cid:26) (cid:12)(cid:12) ˜bi≥0 (cid:16) (cid:17)(cid:27) relaynetwork,we showin[4]thatthe SNRauctionachievesthe which can be written as B(cid:12)(cid:12)i(b−i,π) = ( i,k(b−i,π), k ). fairresourceallocation(i.e. itsolvesProblem(5))ifatleastone An NE is also a fixed pointsolutionof alBl users’ best re∀spo∈nsKes. user wants to use the relay at the threshold price πth. In the Nextwewillconsidertheexistence,uniquenessandpropertiesof multiple-relay case, however, some relays may never be able to theNE,andhowtoachieveitinpractice.AlthoughingeneralNE achieveaParetooptimalallocation,whichisabasicrequirement is not the most desirable operational point from an overall sys- forafairallocation. Thisisbecauseiftherelayannouncesahigh tempointofview,wewillshowlaterthatthetwoauctionsindeed price,nouserswillusetherelay. Iftherelaydecreasestheprice, achieve our desired network objectives under suitable technical theremightbetoomanyusersswitchingtothesamerelaysimul- conditions. taneouslysuchthatanNE doesnotexist. Ontheotherhand,we canshowthefollowing: 3.1. SNRAuction Theorem3 IfthereexistsaNEsuchthateachrelay’sresourceis WefirstconsidertheSNRauctionwhereuseri’spaymentisCi = fullutilizedandeachrelayisusedbyatleastoneuser,thecorre- kπkqik△SNRik. spondingpowerallocationisfair(i.e.,itsolvesProblem(5)). Theorem1 In an SNR auction with multiple relays, a user i ei- P 3.2. PowerAuction therdoesnotuse anyrelay, orusesonlyonerelay r with the k(i) Here we consider the power auction, where user i’s payment is smallestweightedprice,i.e.,k(i)=argmin π q . k∈K k ik C = π P . There are two key differences here com- Theorem1impliesthatwecandivideamultiple-relaynetwork i k k rk,di intoK+1clustersofnodes:eachofthefirstK clusterscontains paredwiththeSNRauction. First,ausermaychoosetousemul- P onerelaynodeandtheuserswhousethisrelay,andthelastcluster tiple relays simultaneously here. User i’s best response can be contains users that do not use any relay. Then we can analyze written in the following linear form: (b ,π) = fp (π) eachclusterindependentlyasasingle-relaynetworkasin[4]. In Bi,k −i,k i,k particular, for a user i belonging to cluster k(i) K, its best b +β , k .Tocalculatefp (π),userineedsto responsefunctionis ≤ j6=i j,k k ∀ ∈K i,k (cid:16)coPnsideratotalof(cid:17) Kl=0 Kl casesofchoosingrelays. Forexam- Bi,k b−i,k,πk =( fis,k(πk)“Pj06=,ibj,k+βk”, kot=herkw(isi)e., (10) psildee,rwfhoeunrcthaseeres:anreoPttwusoinrge(cid:0)laany(cid:1)ysrineltahye,unseitnwgorrekl,aya1usoenrlnye,uedsisntgorceolany- ` ´ Note that user i’s best response is related only to the bids from 2 only,and usingbothrelays. For the givenrelay choicein case userswhoareinthesamecluster. Thelinearcoefficientfis,k(πk) n,itcalculatesthelinearcoefficientsfip,k,n(π)forallkinclosed- isderivedas form (this involves threshold policy similar to the SNR auction) fis,k(πk)= (11) andthe correspondingrate increase△Rin . Thenit findthe case that yields the largest payoff, n∗ = argmax Rn, and sets 8>>><>>>:wheP2rπrekkqGWirkkl,nd2iP−s1i−GΓssii(,,rPdkisi−G(sPis,∞r0ikG,,+siσ,2rk)σ+2PrkGrk,di+σ2)σ2, π∈ππ`≤≥πsiππˆ,issiπˆ,,is´, udtfhisep,eepkrre(aniπdlwa)srigl=olencπhfthkoip,eok,onspr∗era(inπcsoem)tsta∀oalknlu.nπsokeS′uern(eckcloa′enyd6=drb,kkyt.h)aeclallnirnemelaaaryksce.onfeFipf△,ofikrc(eiπeixn)atm=fpip0,lke,,(i.πeei.)-, SimilartointheSNRauction,wecanalsocalculateathresh- W/(2q ln2) old price π for relay r . In this case, we assume that all re- πs , ik , (12) k,th k i 1+Γsi,di+(PsiGPsrik,rGkr+kP,drikPGsirGk,sdii,+rkσ2)σ2 llaaytesπakpn,nthousnuccehitnhfiatniteliy∈Ihifgisf,hkis,(kπp(kπri)kc+)e1s <exc1epwthrekn,πaknd>thπekpn,thc,alacnud- andπˆisisthesmallestpositiverootofthefollowingequationinπ i∈I fisf,kis,(kπ(kπ)k+)1 ≥1Pwhenπk ≤πkp,th. πq (1+Γ )−W log 2πqikln2(1+Γ )2 + 1 =0. CPolloary1 In a power auction with multiple relays, there exists ik si,di 2 „ 2„ W si,di « ln2« anNEifπ >πp foreachk. (13) k k,th Ontheotherhand,necessaryconditionforexistenceofNEaswell In the degeneratecase where πˆs > πs, we have fs (π ) = i i i,k k ∞ as conditions for uniqueness are not straightforward to specify, forπ <πˆs andfs (π )=0forπ πˆs. Noticethatthelinear k i i,k k k ≥ i andareleftforfutureresearch. Wecancharacterizetheproperty coefficientisdeterminedbasedonasimplethreshold policy,i.e., oftheNEasfollows: comparingthepriceannouncedbytherelaywiththe twolocally computablethresholdprices. Theorem4 IfthereexistsaNEsuchthateachrelay’sresourceis Now let us assume that all users use the same relay r , then fullutilizedandallusersuseallrelays,thecorrespondingpower k from (6) and (10) we know that the total demand for the relay allocationisefficient(i.e.,itsolvesProblem(4)). power is fis,k(πk) P , which can not exceed P . It is i∈I fis,k(πk)+1 rk rk 3.3. AsynchronousBestResponseUpdates alsoclearPthatfis,k(πk)isanon-increasingfunctionofπk. Then ThelastquestionwewanttoanswerishowtheNEcanbereached wecanfindathresholdpriceπs suchthat fis,k(πk) <1 in a distributed fashion. Since user i does not know the best re- k,th i∈I fis,k(πk)+1 sponsefunctionsofotherusers,itisimpossibleforittocalculate whenπk >πks,th,and i∈I fisf,kis,(kπ(kπ)k+)1 ≥1Pwhenπk ≤πks,th. the NE in oneshot. In the contextofa single-relaynetwork[4], P wehaveshownthatdistributedbestresponseupdatescanglobally convergetotheuniqueNE(ifitexists)inasynchronousmanner, i.e.,allusersupdatetheirbidsineachtimeslotsimultaneouslyac- cordinglyto b (t) = fs(π) b (t 1)+β . In practice, i i l6=i l − however,itwouldbedifficult(cid:16)orevenundesirableto(cid:17)coordinateall P userstoupdatetheirbidsatthesametime,andthefollowingcan beused: Algorithm1AsynchronousBestResponseBidUpdates (a)SynchronousUpdates (b)AsynchronyUpdates 1: t=0. 2: Eachuserirandomlychoosesabi(0)∈ bi,¯bi . Fig.2. BidsupdateinanSNRauction(thesameonerelay). 3: t=t+1. 4: foreachuseri (cid:2) (cid:3) probability 0.1, 0.5 and 1, respectively. We can see that the al- ∈I gorithmconvergestothesameoptimalvaluesasthesynchronous 5: if t ithen 6: bi,∈k(Tt)= fis(π) l6=ibl(t−1)+β ¯bbii,,kk,∀k. updatecasebutinlong5e.rCtimOeN(CasLeUxSpIeOctNedS). 7: endif h (cid:16)P (cid:17)i Inthispaper,acooperativecommunicationnetworkwithmultiple 8: endfor relayshasbeenconsidered,andtwoauctionmechanisms,theSNR 9: GotoStep1. auction and the power auction, have been proposed to distribu- tivelycoordinatetherelaypowerallocationamongusers. Unlike We show that asynchronousbest response updatesconverges thesingle-relaycasestudiedin[4],heretheusers’choicesofre- in the multiple-relay case. The complete asynchronous best re- lays depend on the prices announced by all relays. In the SNR sponse update algorithm is given in Algorithm 1 ([x]b = max auction, a user will choose the relay with the lowest weighted a min x,b ,a .), where each user i updates its bid only if the price. In the power auction, a user might use multiple relays si- { { } } currenttimeslotbelongstoaset ,whichisanunboundedsetof multaneously,dependingonthenetworktopologyandtherelative i timeslotsandcouldbedifferentfrTomusertouser.Wemakeavery relationship among the relays’ prices. A sufficient condition is mildassumptionthattheasynchronismoftheupdatesisbounded, shownfortheexistenceoftheNashequilibriuminbothauctions, i.e.,thereexistsafinitebutsufficientlylargepositiveconstantB, andconditionsarederivedforuniquenessintheSNRauction.The andforallt ,thereexistsat suchthatt t B. fairnessoftheSNRauctionandtheefficiencyofthepowerauction 1 i 2 i 2 1 ∈ T ∈ T − ≤ Eachuserupdatesitsbidatleastonceduringanytimeintervalof arealsodiscussed. Finally,ifanNEexists,userscanachieveitin lengthBslots. TheexactvalueofBisnotimportant(aslongasit adistributedfashionviabestresponseupdatesinanasynchronous isbounded)fortheconvergenceproofandneedsnottobeknown manner. bytheusers. 6. REFERENCES Theorem5 Ifthere exists a uniquenonzeroNE in the SNR auc- tion,therealwaysexistsalowerboundbidvectorb= ¯b , i [1] A.Sendonaris,E.Erkip,andB.Aazhang, “Usercooperation i andanupperboundbidvector¯b = (b , i ),underw∀hic∈hAIl- diversity-PartI:Systemdescription,”IEEETrans.Commun., i ∀ ∈I (cid:0) (cid:1) vol.51,no.11,pp.1927–1938,2003. gorithm1globallyconvergestotheuniqueNE. [2] T. Ng and W. Yu, “Joint optimization of relay strategies In practice, we can choose b to be a sufficiently small posi- andresourceallocationsincooperativecellularnetworks,” in tive vector (to approximate zero bids from users) and ¯b to be a IEEEJ.SelectedAreasCommun.,vol.25,no.2,pp.328-339, sufficientlylargefinitevector. Feburary2007. [3] S. Savazzi and U. Spagnolini, “Energy aware power 4. SIMULATIONRESULTS allocation strategies for multihop-cooperative transmission Forillustrationpurpose,weshowtheconvergenceofAlgorithm1 schemes,” inIEEEJ.SelectedAreasCommun.,vol.25,no.2, inamultiple-relaySNRauction.Weconsideranetworkwiththree pp.318-327,2007. usersandtworelays.Thethreetransmittersarelocatedat(100m,- [4] J.Huang,Z.Han,M.Chiang,andH.V.Poor, “Auction-based 25m), (-100m,25m) and (100m,5m), and the three receivers are distributedresourceallocationforcooperationtransmissionin located at (-100m,25m),(100m,25m)and (-100m,5m). The two wirelessnetworks,”inProc.ofIEEEGlobalCommunications relaysare located at(0m,-2m)and (0m,0m). All the priorityco- Conference,WashingtonD.C.,November2007. efficients q = 1. Since the first relay announcesa price lower [5] R. Jain, W. Hawe, D. Chiu, “A quantitative measure of ik than the second relay, all users choose to use the first relay. In fairness and discriminationfor resourceallocation in Shared Fig.2.a,weshowtheconvergenceoftheusers’bidstothefirstre- ComputerSystems,”DECTechnicalReport,September1984. layundersynchronousupdates,whereeachuserupdatesitsbidin [6] J.Sun,L.Zheng,andE.Modiano, “Wirelesschannelalloca- eachtimeslot. Thesolidlinesshowtheevolutionofthebidsand tion using an auction algorithm,” in IEEE J. Selected Areas Commun.,vol.24,no.5,pp.1085-1096,May2006. thedottedlinesshowtheoptimalvaluesofthebidsafterconver- [7] J. Huang, R. Berry, and M. L. Honig, “Auction-basedspec- gence.InFig.2.b,weshowtheconvergenceunderthesamesetup trum sharing,” ACMMobile Netw. andApplic. Journal, vol. withasynchronousconvergence. Threeusersrandomlyandinde- 11,no.3,pp.405–418,June2006. pendentlychooseto updatetheirownbidsin eachtimeslotwith

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.