ebook img

Attitude Control Subsystem Design of the Stable and Highly Accurate Pointing Earth-imager David Ju PDF

144 Pages·2017·5.02 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Attitude Control Subsystem Design of the Stable and Highly Accurate Pointing Earth-imager David Ju

Attitude Control Subsystem Design of the Stable and Highly Accurate Pointing Earth-imager A MSc Thesis David Ju By in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering at the Delft University of Technology Department of Space Engineering 5th October 2017 Supervisor Dr.ir. J.M.Kuiper CommitteeMembers Dr. A.Cervone ir. B.C.Root Abbreviations ACS AttitudeControlSubsystem ADCS AttitudeDeterminationandControlSubsystem ARE AlgebraicRicattiEquation ATS AttitudeThrusterSubsystem CMG ControlMomentGyro ConOps ConceptofOperations COTS Commercialofftheshelf EO EarthObservation FMS1 FullMajorSpinup FMS2 FullMinorSpinup FOV FieldofView IAGA InternationalAssociationofGeomagnetismandAeronomy IFOV InstantaneousFieldofView IGRF12 InternationalGeomagneticReferenceField12thgeneration LEO LowEarthOrbit LQR LinearQuadraticRegulator MEMS microelectromechanicalsystem MSAFE MarshallSolarActivityFutureEstimates(Model) MSFC MarshallSpaceFlightCenter MT Magnetorquer MTF ModulationTransferFunction MW MomentumWheel MWTS MomentumWheelTorquingSubsystem NASA NationalAeronauticsandSpaceAdministration NRLMSISE00 NavalResearchLaboratoryMassSpectrometerandIncoherentScatterradarExosphere(2001Model) PPL PrecessionPhaseLock PS PartialSpinup RW ReactionWheel SHAPE StableandHighlyAccuratePointingEarth-imager SMC SlidingModeControl SMCS SlidingModeControlSpinup SSO SunSynchronousOrbit 2 TBD ToBeDetermined UTC CoordinatedUniversalTime VLEO VeryLowEarthOrbit Nomenclature η NutationAngle[deg] λ Longitude[deg] µ PointingError[rad] µ0 VacuumMagneticPermeability[4π·10−7TmA-1] µ GravitationalParameterofEarth[398600km3s-2] E ω AngularBodyRateColumnVector[rads-1] Ω PrecessionFrequency[rad/s] p ω RelativeRotorAngularVelocityAroundtheSpinAxis[rads-1] s φ Latitude[deg] ρ TotalAirMassDensity[kgm-3] ρ MaterialDensity[kgm-3] m τ ExternalTorque[Nm] ξ DamperDisplacement[m] A WettedSurfaceArea[m2] a Semi-majorAxis[km] B MagneticFluxDensity[T] b InitialDamperMassLocationtoCenterofMassColumnVector[m] c DampingCoefficient[kgsm-1] d C DragCoefficient[-] D F Thrust[N] T g SpinupTorque[Nm] a h Altitude[km] H AngularMomentumColumnVector[Nms] H RotorAngularMomentum[Nms] s I MassMomentofInertiaMatrix[kgm2] I RotorMomentofInertiaAroundtheSpinAxis[kgm2] s k SpringStiffness[kgm-1] d 3 m Mass[kg] M DipoleMomentVectoroftheMagnetorquers[Am2] A M Earth’sMagneticMomentVector[8·1022Am2] E M SpacecraftMagneticMomentVector[Am2] M m DamperMass[kg] d n MeanMotion[rads-1] n SpinAxisColumnVector[-] p LinearMomentumVector[kgms-1] p LinearMomentumofDamperMass[kgms-1] n T RotationalKineticEnergy[J] t MaintenanceOperationTime[s] m t NominalOperationTime[s] n 4 Abstract Astechnologyimproves,increasinglyhigherresolutionpayloadcanbeachievedusingCubesatsforEarthobservation. The diffraction limit prevents the resolution to up to a few meters for these missions and are confined to Very Low EarthOrbits(VLEO).Atthesealtitudes, strongdisturbancesactonthesystem, limitingitslifetimeandthepointing capabilitiesofCubeSats. Asasolution,theDepartmentofSpaceEngineeringattheDelftUniversityofTechnology hasproposeda6unitCubeSatnamedtheStableandHighlyAccuratePointingEarth-imager(SHAPE)orbitingataSun synchronousVLEOwhichusesamomentumwheeltopassivelystabilizethesystemagainsttheexternalenvironment withinacompetitivecostoflessthan500000e. Byutilizingthedual-spinstabilizationconcept,composedofastable platformandaspinningrotor,itisexpectedtoperformpointingmissionsoflessthan1degree. In this thesis, the SHAPE concept has been revisited and further developed based on the work of Kuiper and DolkenstoconductwhetherthesetypesofmissionsarefeasiblewithintheaspectoftheAttitudeDeterminationand ControlSubsystem(ADCS).Thisthesiscoversthebaseofthissubsystemapproachedfromatop-downmethodology; designedfromthefinalnominalmissionmodetothedetumblingmodeonasystemlevel. TheADCSdesignwillconsistofamomentumwheelwhichhasbeendeterminedtohaveanangularmomentumof 1Nms. Thisvalueisbasedonapredictionoftheworst-caseatmosphericdensityofthenextsolarcycle. Thedesign point,atwhichthemomentumwheelhasbeensized,hasbeentakenat90%ofSHAPE’slifetimeafterseveraldesign iterations. Hereby, the last 10% of the mission has been partially forfeited with degraded performances due to the exponentialincreaseindisturbancesactingonthespacecraftatloweraltitudes. Astherefore,themassandsizeofthe momentumwheelhasbeenreducedwith41%and20%,respectively. Tore-aligntheangularmomentumvectorwithin the1degreepointingrequirement,asetofmagnetorquerswithadipolemomentof0.5Am2 hasbeenchosendueto their low power consumption, mass, cost, and high reliability while capable of producing sufficient torque. Also, a damperistobeintegratedasitprovidesthesystemasymptoticreductionofthetransversemomenta,thusincreasing theimagequalitywithoutexpenditureofadditionalpower. Toreachthenominalmissionobservationstate,severalmomentumwheelspinupstrategieshavebeeninvestigated. Basedonatrade-offbetweenthreespinupconcepts,itwasconcludedthatthemajoraxisspinupismostsuited. This type is initiated after the spacecraft as a whole has attained an angular momentum equivalent to that of the desired endvalueofthemomentumwheel. Then,aconstantrotortorqueisapplied,providingamomentumtransferfromthe platformtotherotor. Thedisadvantageofthisspinupprocedureisthatthesystem’ssolarpanelsarealignedparallelto theorbitalplane,meaningthatpowercannotbegeneratedandbatteriesarerequiredduringthespinup. Despitethis, it was found that after completing the spinup, the transverse angular momenta was minimized to marginal values in contrasttotheotherspins. Theinclusionofthepassivedamperduringthemajoraxisspinfurtherimprovestheability ofreducingthetransversemomentumasthedamper’sdissipativeenergypropertyaddsanasymptoticattractionatthe pointoflowestenergy,locatedatthespinaxisneartheendofthespinup. Theall-spunstateisachievedusingasetofthrusters. Thischoicewastakenasthemagnetorquerswasfoundnot todeliversufficienttorque. Fromthedetumblinganalysis,itwasconcludedthatthemagnetorquersareabletoreduce thetumblingrateswithmagnitudesofupto35deg/stomeanmotionvaluesinlessthananorbitusingastaticgain B-dotcontroller. Imperfectionsinthemomentumwheelcancausestaticanddynamicimbalance,impartinginternaldisturbancesto thesystemwhichaffectstheimagequalitydetrimentally. Therefore,isolatorsaretobeintegratedwithinthemomentum wheelsuspensionsubsystem. Ifthesedisturbancescanbenegatedusingisolators,itcanbeexpectedthatthepointing error will stay within one degree and attitude stability can be achieved at least until the design altitude of 280 km. However, the analysis and design of the isolators have yet to be done and thus the attainability of the pointing and imagequalityrequirementsarestillinconclusive. 5 6 " " Life is the sum of all your choices. - Albert Camus 7 8 Preface Frommyyouth,Iwasalwaysfascinatedinrockets,planetsandtheuniverse(andalsoinsectsforwhichmycuriosity to it has vanished). Pursuing science was very obvious. The interest of space and pursue to it were not during my lifetime. Atmyfinalyearsofhighschool, mycarrierdecisionhadtobemadeandwasdividedintoeithermedicine oraerospaceengineering; tohelppeopleorgointothedirectionofmyowninterest. Thisdecisionwastough, butI decidedtopursueinaerospaceengineeringatDelftUniversityofTechnologymainlyasachallenge. Halfwaythough my bachelor studies, aerospace engineering had not been motivating for me and pursuing this seemed to have been disappointing. Doubtwasinmymind. Thischangedatthedesignsynthesisexercise. Focusingmoreonthespaceand especiallyontheattitudecontrolsystemofthespacecrafthasawokenmyfascinationinspaceandhasenlightenedme tofurtherpursuetodomymaster’sdegreeinspaceengineering. TokeepthinkingaboutwhattodoandwhatwouldhavebeenifIhavechosenadifferentpathisathoughtoffutility aslifeiscontinuousandflowinginasingledirection. OrasAlbertCamus,aphilosopheroftheAbsurd,hassaid;"You willneverbehappyifyoucontinuetosearchforwhathappinessconsistsof. Youwillneverliveifyouarelookingfor themeaningoflife." IwouldliketothankmysupervisorHansKuiperforthesubjectofSHAPEandhispragmaticapproachtowards engineering. Thissubjecthasgreatlyintroducedmetospinningspacecraft(whichIthoughttobeobsoleteforsatellites) and its intriguing complex rotational motions. Furthermore, I am especially grateful for my parents and brother for supportingmethroughoutmyacademiclifewiththeirloveforwhichIdedicatethisthesisto. 9 Contents 1 Introduction 17 2 SystemObjective 19 2.1 CaseStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 SystemRequirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 ControlModes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 ControlModeRequirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 ModulationTransferFunctionRequirement . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 DesignMethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 ConceptofOperations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 BackgroundTheory 28 3.1 MathematicalNotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 ReferenceFrames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 RotationalKinematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.1 DirectionCosineMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.2 EulerAngles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.3 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.4 KinematicDifferentialEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.5 ConversionofAngularRepresentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 RotationalDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4.1 DerivationofEuler’sRotationalEquationsofMotion . . . . . . . . . . . . . . . . . . . . . . 33 3.4.2 GyroscopicProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5.1 StabilityintheSenseofLyapunov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5.2 Lyapunov’sDirectMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5.3 SpinStability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5.4 EnergyDissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6 MomentumSphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.7 Dual-SpinSpacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.7.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.7.2 MomentumSphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.7.3 EnergyDissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 NominalandMaintenanceModes 44 4.1 NominalOrientationandMomentofInertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2 EnvironmentalDisturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.1 GravityGradientDisturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.2 AerodynamicDisturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.3 MagneticFieldDisturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.4 Eddy-CurrentDisturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 AtmosphericDensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 10

Description:
will never be happy if you continue to search for what happiness consists of. You will never live if you are looking for the meaning of life." I would like to thank my supervisor Hans Kuiper for the subject of SHAPE and his pragmatic approach towards engineering. This subject has greatly introduced
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.