Atropisomeric Diaryl Ethers and other Non-Biaryl Atropisomers A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2010 Abigail Laura Page School of Chemistry 2 Contents List of illustrations 6 List of tables 11 Abstract 13 Declaration 14 Copyright Statement 15 Acknowledgements 15 Abbreviations 16 1. Introduction..................................................................................................................19 1.1 Chirality and the Need for Asymmetric Synthesis...............................................20 1.2 Atropisomers: Discovery and Use........................................................................22 1.3 Non-Biaryl Atropisomers: Tools for Stereoselective Synthesis?.........................26 1.3.1 Amide axis controlled formation of new chial centres...................................26 1.3.2 Utilising conformational interplay to control stereoselectivity......................27 1.3.3 Non-Biaryl Atropisomers as Molecular Machines?.......................................29 1.3.4 Non-biaryl atropisomers in catalysis and synthesis.......................................31 1.4 Asymmetric Synthesis of Atropisomers...............................................................34 1.4.1 Asymmetric coupling methods.......................................................................34 1.4.2 Classic resolution...........................................................................................37 1.4.3 Kinetic resolution methods.............................................................................38 1.4.4 Dynamic Kinetic resolution............................................................................39 1.4.5 Thermodynamic Resolutions..........................................................................40 1.4.6 Dynamic Thermodynamic Resolutions..........................................................44 1.4.7 Aromatic ring construction.............................................................................46 1.4.8 Desymmetrisation methods............................................................................47 1.5 Aims of the Project...............................................................................................51 2. Results and Discussion.................................................................................................53 2.1 Synthesis of Diaryl Ethers....................................................................................53 2.1.1 Diaryl ether synthesis and requirements for chirality....................................53 2.1.2 Synthetic Strategy...........................................................................................56 2.1.3 Chlorination....................................................................................................58 2.1.4 Diaryl ether formation....................................................................................60 2.1.5 DiBAl-H reduction.........................................................................................63 2.1.6 Borohydride reduction....................................................................................64 2.1.7 Routes to the commercially unavailable phenol............................................65 2.2 Biocatalytic Desymmetrisation of Diaryl Ethers.................................................70 2.2.1 Enantioselective acylation and deacylation....................................................70 2.2.2 Kinetic resolution by enantioselective oxidation...........................................72 2.2.3 Desymmetrisation with Ketoreductases.........................................................82 2.2.4 Ongoing and future work: Toward ligand synthesis......................................85 2.3 Enantiopos-Differentiatiation and Stereoselectivity of Laterally Lithiated Diaryl Ethers ...................................................................................................... 91 2.3.1 Strategy and synthesis of pro-atropisomers...................................................93 2.3.2 Lateral lithiation of meso-dimethoxy analogues............................................94 2.3.3 Lateral lithiation of meso-dimethyl analogues...............................................96 2.3.4 Synthesis and lateral lithiation of meso-carbamate analogues.......................97 2.3.5 Desymmetrisiation and stereoselectivity of laterally lithiated diaryl-ethers100 2.3.6 Configurational stability and stereoselectivity in the reaction and synthesis of laterally lithiated diaryl ethers ............................................... 104 2.4 Other Stereoselective and Conformational Studies of Non-Biaryl Atropisomers ....................................................................................................122 2.4.1 Stereoselective reductions of a diaryl ether..................................................122 2.4.2 Stereoselective additions to diaryl sulfides..................................................127 2.4.3 Conformational study of a diaryl amide in solution.....................................131 3. Conclusions and Future Work..................................................................................138 4. Appendices..................................................................................................................144 I. Calculation of barriers to rotation using VT NMR.............................................144 II. Synthesis of diaryl sulfoxides.............................................................................148 III. Examples of HPLC traces...................................................................................151 IV. Selected NMR Spectra.......................................................................................154 5. Experimental Section.................................................................................................159 5.1 General Procedures............................................................................................159 5.2 Experimental Data..............................................................................................165 5.3 Biocatalysis Procedures......................................................................................221 5.4 X-Ray Crystal Data............................................................................................224 6. References...................................................................................................................231 4 Total Word Count: 52 627 5 List of Illustrations Figure 1: Chiral structures of Naproxen 1, DOPA 2 and Thalidomide 3 20 Figure 2: 6,6’-dinitro-2,2’-diphenic acid 22 Figure 3: Barriers to atropisomerism 22 Figure 4: Atropisomeric ligands 23 Figure 5: Atropisomeric features in some natural products and 24 pharmaceuticals Figure 6: Non-Biaryl Atropisomers 25 Figure 7: Predferred conformation of (–)-ephedrine adjacent to an amide axis 28 Figure 8: Conformational preference of Xanthene 29 Figure 9: Diarylether based ligands 31 Figure 10: Atropisomeric organocatalyst NOBIN 32 Figure 11: Structure of Vancomycin aglycon 42 Figure 12: Conformational preference in sulfinyl ethers 45 Figure 13: ABTS peroxidase assay to measure activity of GOase towards 73 substrates 119a-d Figure 14: Activity Screening of diols 119a-d with GOase M 74 3-5 Figure 15: Enantioselective desymmetrisation of 119d using GOase M3-5 76 Figure 16: CD spectra of (+)-P-140: (blue line) observed for the slower 78 reacting enantiomer of 140 Figure 17: Docking model of the faster reacting enantiomer (M)-140 into the 79 active site of GAose M 3-5 Figure 18: Kinetic resolution of (±)-140 using GOase M3-5 variant 80 Figure 19: HPLC trace of monoaldehyde (+)-P-140 (Chiralcel R,R-Whelk 81 column running 97:3 hexane:IPA at 0.5 ml/min) Figure 20: Examples of P,N-ligands and their use in synthesis115,116 86 Figure 21: HPLC trace of transaminase reaction mixture after 24 h 87 Figure 22: Increase of product over time for the transamination of 118d with 88 TA-113 Figure 23: Stereoisomers of intermediate organolithium and pathways of 104 epimerisation or racemisation Figure 24: Reaction mechanism of organolithiums – SE2ret or SE2inv 105 Figure 25: Configurationally stable and configurationally labile benzyl lithium 114 complexes Figure 26: X-ray crystal structure of 245 showing anti-configuration 124 6 Figure 27: Stereoselectivity of Griganard addition to formyl 243 126 Figure 28: Proposed transition state in the syn selective addition of ortho 129 lithiated ureas to aldehydes13 Figure 29: Conformational control in the diaryl-amides 131 Figure 30: X-ray crystal structure of 269b 133 Figure 31: VT NMR and lineshape simulation using gNMR for 272 135 Figure 32: Transition states for rotation about a benzamide axis when R is 136 small Figure 33: Transition states for rotation about a benzamide axis when R is 137 large Figure 34: Takaya’s (R,S)-BINAPHOS 139 Figure 35: Other chiral bases for the asymmetric deprotonation of 195 140 Figure 36: Conformation preferences in solution of diaryl amide 272 142 Figure 37: Plot of ln kA vs 1/T to determine ΔH‡ and ΔS‡ for rotation in 272a 146 Figure 38: Plot of ln kA vs 1/T to determine ΔH‡ and ΔS‡ for rotation in 272b 147 Figure 39: Atropisomerism in diaryl sulfoxides 148 Figure 40: Normal phase HPLC for mixture of diol 119d, monoaldehyde 140 151 and dialdehyde 118d Figure 41: Reverse phase HPLC for mixture of monoaldehyde 140 and 151 dialdehyde 118d Figure 42: Desymmetrisation of 119d using GOase (ee of 140 = 91%) 152 Figure 43: Kinetic Resolution of racemic 140 using GOase (ee of 140 = 94%) 152 Figure 44: Reduction of dialdehyde 118d using ketoreductase KRED118 153 Figure 45: Reduction of dialdehyde 118d using ketoreductase KRED108 153 Scheme 1: Products from the addition of aldehydes to lithiated 20 27 Scheme 2: Alkylation of amino acid derived diazines via a chiral relay 27 Scheme 3: 1,5-stereocontrol by stereochemical relay from an oxazolidine 28 Scheme 4: 1,23 remote stereocontrol in trisxanthene 30 Scheme 5: First non-biaryl atropisomeric chiral ligand 31 Scheme 6: Non-biaryl atropisomeric organocatalysis 32 Scheme 7: Taguchi’s enentioselective synthesis of a NET inhibitor 33 Scheme 8: Key step in the synthesis of (+)-kotanin35 34 Scheme 9: Meyers’ oxazoline auxiliary in diastereoselective synthesis of 35 binaphthyl38 7 Scheme 10: Diastereoselective Suzuki cross coupling of planar chiral aryl bromides with boronic acids43 36 Scheme 11: Asymmetric Kumada cross coupling in the enantioselective 36 synthesis of binaphthyls56 Scheme 12: Suzuki coupling in the asymmetric synthesis of biaryls.60 37 Scheme 13: Synthesis of BINAP by Classic Resolution 38 Scheme 14: Asymmetric Synthesis of an Atropisomeric Urea by Kinetic 39 Resolution Scheme 15: Bringmann’s method for dynamic kinetic resolution 40 Scheme 16: Meyers thermodynamic resolution of o-bromoaryloxazolines 40 Scheme 17: Thermodynamic resolution in the synthesis of ligand 35 41 Scheme 18: Selective ring closing of C-O-D ring system 43 Scheme 19: Selective ring closing of D-O-E ring system 43 Scheme 20: Nicolaou’s Asymmetric synthesis of the C-O-D ring system of 44 Vancomycin Scheme 21: Synthesis of enantiomerically enriched atropisomeric diaryl ethers 45 by dynamic thermodynamic Scheme 22: Asymmetric synthesis of a biaryl by construction of an aromatic 47 ring Scheme 23: Atroposelective formation of anilides by construction of an 47 aromatic ring Scheme 24: Desymmetrisation via enantioselective dilithiation 48 Scheme 25: Atroposelective reactions of planar chiral complexes 48 Scheme 26: Enantioselective desymmetrisation of ditriflates by Palladium 49 catalysed cross coupling Scheme 27: Further manipulation to desymmetrised triflate, synthesis of 49 atropisomeric phosphine67 Scheme 28: Enzymatic desymmetrisation of axially chiral biaryl 105 50 Scheme 29: Increasing the barrier to rotation in the diaryl ethers 51 Scheme 30: SNAr facilitated by ortho-electron withdrawing groups 55 Scheme 31: Chlorination of isophthalonitrile as reported by Krizan. 56 Scheme 32: Synthetic route towards potentially atropisomeric diaryl ethers 57 Scheme 33: Possible reaction mechanisms for the formation of impurities 120 61 and 121 Scheme 34: Synthesis of phenol 123 via its diazonium salt 65 Scheme 35: Reportted synthesis of ortho-substituted phenol via Friedel Crafts 66 chemistry90 8 Scheme 36: Attempted synthesis of 129 via Friedel Crafts chemistry 66 Scheme 37: New route to commercially unavailable phenol 12791 66 Scheme 38: Difficulty of ortholithiating in the presence of MEM 67 Scheme 39: Synthetic strategy towards commercially unavailable phenol 67 Scheme 40: Desymmetrisation of an atropisomeric achiral ether 70 Scheme 41: Synthesis of a mono-acylated racemic reference 71 Scheme 42: Acylation with CAL-B and vinyl acetate 72 Scheme 43: Directed evolution of GOase 73 Scheme 44: Synthesis of racemic references for GOase M3-5 enzyme study 74 Scheme 45: Enantioselective oxidation of pro-atropisomeric diarl ethers 76 Scheme 46: Reduction of 118d with ketoreductases (KREDs) 82 Scheme 47: Synthetic strategy towards diketone 150 from aldehyde 118d 83 Scheme 48: Synthesis of diketone 152a and racemic reference 154 from 85 dinitrile 117d Scheme 49: Synthesis of Sitagliptin phosphate via a transamination 86 Scheme 50: Synthesis of monoaminated diaryl ether 87 Scheme 51: Synthesis of a phosphinophenyl ethers based ligand 88 Scheme 52: Nitration of phenol 168 89 Scheme 53: Synthesis of a potential ligand 89 Scheme 54: Diastereoselective lateral lithiations of amides 91 Scheme 55: Absolute stereocontrol via lateral lithiations of amides 91 Scheme 56: Desymmetrising lateral lithiation of a benzamide 92 Scheme 57: Lateral lithiation of non-symmetrical diaryl ether 182 92 Scheme 58: Lateral lithiation strategy 93 Scheme 59: Lateral lithiation of dimethoxy compound 184 94 Scheme 60: Possible mechanism for mono-aldehyde biproduct formation 192 96 Scheme 61: Lateral lithiation of dimethyl compound 187 96 Scheme 62: Protection of diol 119 with MEM or diisoptopylcarbamate 97 Scheme 63: Conditions for attempted lateral lithiation of carbamate 194 99 Scheme 64: Lateral lithiation and electrophilic quench of carbamate 195 100 Scheme 65: Lateral lithiation of daryl ether 195 in the presence of (–)- 101 sparteine Scheme 66: Lateral lithiation and quench of daryl ether 195 with SnBu3Cl 102 9 Scheme 67: Proposed reaction mechanism leading to the diastereotopic ratios 103 of 203 Scheme 68: Stereospecificity in the electrophilic substitution of benzylic 106 organolithium 200 Scheme 69: Lateral lithiation and quench of daryl ether 195 with MeI or 106 MeOTf Scheme 70: Stereospecificity in tin-lithium exchange 107 Scheme 71: Complimentary syntheses of 201 107 Scheme 72: Complimentary synthesese of 199 and 203 108 Scheme 73: Configurational stability study with Sn-Li exchange 109 Scheme 74: Configurational stability study using Sn-Li exchange 110 Scheme 75: Transmetallation of stannanes 219a and 219b 110 Scheme 76: Non-stereospecificity in the transmetalation of 219b and reactions 111 of 220b Scheme 77: Mechanism of tin-lithium exchange via ate complex 224 112 Scheme 78: Possible invertive and non-stereospecific tin-litium exchange 112 mechanisms Scheme 79: Possible invertive transmetallation to explain the stereochemical 113 outcome of 199 and 201 Scheme 80: Possible racemisation mechanism of metallated benzylic 114 carbanions 229 Scheme 81: Enantioselective reaction pathways 115 Scheme 82: Asymmetric deprotonation of aromatic amide 233 115 Scheme 83: Asymmetric substitution – dynamic thermodynamic resolution 116 Scheme 84: Asymmetric substitution by dynamic kinetic resolution 116 Scheme 85: Asymmetric substitution by dynamic thermodynamic resolution 117 Scheme 86: Tansmetallation and electrophilic quench of pivaloyl at either -25 118 °C or -78 °C Scheme 87: Asymmetric substitution by dynamic kinetic resolution 119 Scheme 88: Tin-lithium exchange in the presence of (–)-sparteine 120 Scheme 89: Reaction of racemic organolithium 204 with electrophiles in the 120 presence of (–)-sparteine Scheme 90: Reaction of 195 with premixed (–)-sparteine 121 Scheme 91: Stereoselective reductions controlled by the diaryl ether axis 122 Scheme 92: Synthesis and stereoselecte reduction of a prochiral ketone 123 Scheme 93: Possible conformations of starting ketone, when R=Me and when 125 R=Ph 10
Description: