ATRAP Buffer-Gas Positron Accumulator Daniel Comeau ADISSERTATIONSUBMITTEDTO THEFACULTYOFGRADUATESTUDIES INPARTIALFULFILLMENTOFTHEREQUIREMENTS FORTHEDEGREEOF DOCTOROFPHILOSOPHY GRADUATEPROGRAMINPHYSICSANDASTRONOMY YORKUNIVERSITY TORONTO,ONTARIO June2014 (cid:13)c DanielComeau,2014 Abstract The ATRAP collaboration has been creating antihydrogen, the simplest antimatter atom, since 2002 and has a long-term goal of performing precision laser spectroscopy on these antihydrogen atoms. ATRAP has produced antihydrogen by positron cooling of antiprotons and by a laser-controlled charge-exchange process. Both methods require large numbers of antiprotons and positrons (the constituent particles of antihydrogen). This dissertation describes the methods developed to increase the number of positrons available for the ATRAP experiments by a factor of 200. The development of the new positron loading scheme has enabled the ATRAP collaboration to greatly increase the dailyrateofantihydrogenproduction. Positrons originating from a radioactive source travel through a moderating material and are accumulated in a differentially pumped vacuum chamber. When required, the positronsaresentthroughacomplexmagnetically-guidedbeamlinetothelocationwhere antihydrogen is produced. The system built allows for a reliable, highly-efficient method ofprovidingpositronstotheATRAPexperiment. ii Acknowledgements I am grateful to have had the opportunity to work with a world-class group of re- searchers at a world-class research facility. I would especially like to thank my advisor, Dr. Eric Hessels for his support, patience and guidance. I would also like to thank every memberoftheATRAPcollaborationwhohelpedtomotivateandcreatesuchanenviron- ment of excellence. Five years at CERN would have been unbearable without the help anddedicationofeachmember. I would also sincerely like to thank my wife, Jennifer, for understanding the phrase ‘It can’t NOT be done.’ when explaining my 100 hour weeks at the lab. Also, for her patiencewhenatriptoSwitzerlandwithherhusbandturnedintoatriptoSwitzerlandby herself. Herconstantreassuranceandencouragementwas,atmanytimes,mysolereason tokeepgoing. iii Table of Contents Abstract ii Acknowledgements iii TableofContents iv ListofTables viii ListofFigures ix 1 Introduction 1 1.1 Antihydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 AntihydrogenConstituents: e+ andp . . . . . . . . . . . . . . . 2 1.2 MotivationfortheBuffer-GasAccumulator . . . . . . . . . . . . . . . . 3 1.3 ATRAPCollaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 CERNandtheAntiprotonDecelerator . . . . . . . . . . . . . . . . . . . 4 1.5 PenningTrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5.2 ElectrodeStack: ImplementationofaPenningTrap . . . . . . . . 7 1.6 AntihydrogenProduction . . . . . . . . . . . . . . . . . . . . . . . . . . 8 iv 1.7 NewATRAPApparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.7.1 ATRAPElectrodeStack . . . . . . . . . . . . . . . . . . . . . . 9 1.8 PreviousATRAPMethodofPositronLoading . . . . . . . . . . . . . . . 12 1.9 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Buffer-GasAccumulator 16 2.1 22NaSource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 NeonModerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 ModeratorTheory . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 ModeratorDesign . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 JogSectionandDriftTube . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 ScintillationDetectionforParticleCounting . . . . . . . . . . . . . . . . 25 2.5 ModeratorGrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6 ModeratorEfficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.7 EnergySpreadofModeratedPositrons . . . . . . . . . . . . . . . . . . . 31 2.8 TheAccumulatorPenningTrap . . . . . . . . . . . . . . . . . . . . . . . 31 2.9 Buffer-GasAccumulation . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.9.1 MagneticField . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.9.2 PositronInteractionswithNitrogenMolecules . . . . . . . . . . 34 2.9.3 PressuresintheAccumulator . . . . . . . . . . . . . . . . . . . . 36 2.9.4 ElectrostaticPotentialsintheAccumulator . . . . . . . . . . . . 38 2.10 RotatingWall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.10.1 RotatingWallTheory . . . . . . . . . . . . . . . . . . . . . . . . 39 2.10.2 RotatingWallImplementation . . . . . . . . . . . . . . . . . . . 41 2.11 PlasmaCompressionwithRotatingWall . . . . . . . . . . . . . . . . . . 42 v 2.11.1 PlasmaRadiusMeasurement . . . . . . . . . . . . . . . . . . . . 42 2.11.2 NumberofAccumulatedPositronsVersusAccumulationTime . . 45 2.11.3 RotatingWallAmplitudeandFrequency . . . . . . . . . . . . . . 49 3 TransferringPositrons 52 3.1 PulsingPositronsOutoftheAccumulator . . . . . . . . . . . . . . . . . 52 3.1.1 TimingSequence . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2 CountingAccumulatedPositrons . . . . . . . . . . . . . . . . . . . . . . 56 3.2.1 ChargeMeasurement . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2 CalibratingtheChargeAmplifiers . . . . . . . . . . . . . . . . . 57 3.2.3 NaIIntegralCounting . . . . . . . . . . . . . . . . . . . . . . . 59 4 BridgingtheGap: ThePositronGuide 62 4.1 MagneticFieldoftheSuperconductingSolenoid . . . . . . . . . . . . . 62 4.2 LocationofthePositronAccumulator . . . . . . . . . . . . . . . . . . . 64 4.3 VacuumConsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4 MotionofaPositroninaMagneticField . . . . . . . . . . . . . . . . . . 69 4.4.1 HomogeneousMagneticField . . . . . . . . . . . . . . . . . . . 69 4.4.2 Non-HomogeneousMagneticField . . . . . . . . . . . . . . . . 72 4.5 AdditionalDesignConsiderations . . . . . . . . . . . . . . . . . . . . . 75 4.6 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.6.1 MagneticFieldModelling . . . . . . . . . . . . . . . . . . . . . 77 4.6.2 TrajectoryModelling . . . . . . . . . . . . . . . . . . . . . . . . 78 4.7 OverviewofPositronGuide . . . . . . . . . . . . . . . . . . . . . . . . 82 4.8 ControlofCurrenttotheMagnets . . . . . . . . . . . . . . . . . . . . . 92 vi 4.9 OptimizationTools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.9.1 FaradayCupDetection . . . . . . . . . . . . . . . . . . . . . . . 100 4.9.2 TimingSignals . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5 CatchingPositronsintheATRAPPenningTrap 112 5.1 CloudCharacteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.1.1 EnergyDistribution . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.1.2 TemporalDistribution . . . . . . . . . . . . . . . . . . . . . . . 117 5.1.3 CloudShape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.2 CatchingPositronsintheATRAPElectrodeStack . . . . . . . . . . . . . 124 5.3 CountingPositronsintheATRAPPenningTrap . . . . . . . . . . . . . . 126 5.4 ElectronCoolingofPositrons . . . . . . . . . . . . . . . . . . . . . . . . 128 5.4.1 ElectronLoading . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.4.2 EnhancementUsingElectronCooling . . . . . . . . . . . . . . . 135 5.5 StackingPositrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6 SummaryofResults 140 Bibliography 142 vii List of Tables 2.1 Sourcestrengthandpositronyield . . . . . . . . . . . . . . . . . . . . . 20 2.2 Electrodestackdimensionsandpressureswithineachstage . . . . . . . . 38 4.1 Cyclotron frequencies, cyclotron radius and magnetic fields at different positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 Initialbendingcoils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.3 Axialcoilsalongthepositronguide . . . . . . . . . . . . . . . . . . . . 96 4.4 Rectangularverticalcoils . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.5 Rectangularhorizontalcoils . . . . . . . . . . . . . . . . . . . . . . . . 98 4.6 ControlofalloftheFinalsteeringcoils . . . . . . . . . . . . . . . . . . 99 4.7 Positronannihilationtimedelaysalongthetransfersystem . . . . . . . . 108 6.1 Efficienciesoftransferringpositronsalongtransfersystem . . . . . . . . 141 viii List of Figures 1.1 ThethreemotionsofachargedparticleinaPenningtrap . . . . . . . . . 6 1.2 Threecylindricalelectrodes . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 ThenewATRAPapparatus . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 CutawayshowingtheinterioroftheATRAPelectrodestack . . . . . . . 11 1.5 Schematicofentireapparatus . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Schematicofaccumulator . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Sourcecapsulefor22Na . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Decayschemefor22Na . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Schematicofthesourcechamber . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Schematicofthesourceandsolid-neonmoderatormount . . . . . . . . . 24 2.6 Sourceandjogsectiontofilterouttheunmoderatedfastpositrons . . . . 25 2.7 PositronannihilationsignalonNaIdetectorandphotomultiplier . . . . . 26 2.8 Signalfromtheratemeterduringmoderatorgrowth . . . . . . . . . . . . 28 2.9 Schematic of the assumed geometry used for the GEANT4 simulation to calculateNaIdetectionefficiency . . . . . . . . . . . . . . . . . . . . . . 30 2.10 Energydistributionofthemoderatedpositrons . . . . . . . . . . . . . . . 32 2.11 Schematicoftheaccumulator . . . . . . . . . . . . . . . . . . . . . . . . 34 ix 2.12 Magneticfield,stackandpotentials . . . . . . . . . . . . . . . . . . . . . 35 2.13 Positronrangeofmotionduringeachstepofaccumulation . . . . . . . . 37 2.14 SegmentedelectrodeinStage3usedtoproducerotatingwall . . . . . . . 43 2.15 Pictureofskimmerusedtomakeplasmaradiusmeasurements . . . . . . 44 2.16 Cloudsizemeasurementwithrotatingwallapplied . . . . . . . . . . . . 46 2.17 Loadtimeresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.18 Electricpotentialappliedtoproducerotatingwall . . . . . . . . . . . . . 49 2.19 Scanningrotatingwallamplitude . . . . . . . . . . . . . . . . . . . . . . 50 2.20 Scanningrotatingwallfrequency . . . . . . . . . . . . . . . . . . . . . . 51 3.1 Pulsingsteps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 On-axispotentialstopreparetheaccumulatedpositronstobepulsed . . . 55 3.3 Avtecsaturatedswitchsignal . . . . . . . . . . . . . . . . . . . . . . . . 56 3.4 Physicalsetuptocalibratethechargeamplifiers . . . . . . . . . . . . . . 58 3.5 Positronsignalonchargepreamplifier . . . . . . . . . . . . . . . . . . . 59 3.6 Signalof28millionpositronsannihilatingontheoutputvalve . . . . . . 60 3.7 Calibration of NaI detector when annihilating at the output of the accu- mulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.1 Positronguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Superconductingsolenoidfringingfieldcontourplot . . . . . . . . . . . 65 4.3 Superconductingsolenoidfieldlines . . . . . . . . . . . . . . . . . . . . 66 4.4 Schematicofthe1-mmtube . . . . . . . . . . . . . . . . . . . . . . . . 68 4.5 Magneticgradientalongthepositronpath . . . . . . . . . . . . . . . . . 73 4.6 Definitionofpitchangle . . . . . . . . . . . . . . . . . . . . . . . . . . 74 x
Description: