Demtröder Atoms, Molecules and Photons Wolfgang Demtröder Atoms, Molecules and Photons An Introduction to Atomic-, Molecular- and Quantum-Physics With663Figuresand43Tables 123 ProfessorDr.WolfgangDemtröder UniversityKaiserslautern DepartmentofPhysics 67663Kaiserslautern,Germany e-mail:[email protected]@rhrk.uni-kl.de URL:http://www.physik.uni-kl.de/w_demtro/w_demtro.html ISBN-103-540-20631-0 ISBN-13978-3-540-20631-6 SpringerBerlinHeidelbergNewYork LibraryofCongressNumber:2005936509 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialisconcerned, specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductionon microfilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationorpartsthereofis permittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,initscurrentversion,and permissionforusemustalwaysbeobtainedfromSpringer.ViolationsareliableforprosecutionundertheGerman CopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:1)c Springer-VerlagBerlinHeidelberg2006 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply,evenin theabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulations andthereforefreeforgeneraluse. Typesetting,IllustrationsandProduction:LE-TeXJelonek,Schmidt&VöcklerGbR,Leipzig,Germany Coverdesign:eStudiocalamar,FridoSteinen-Broo,Spain Printingandbinding:StürtzGmbH,Würzburg,Germany Printedonacid-freepaper 56/3141/YL-543210 Preface The detailed understanding of matter, its phase transitions and its interaction with radiation could be only reached, after its microscopic structure determined by the kind of atoms or molecules as basic constituents of matter had been investigated. This knowledge allowed the controlled optimization of characteristic properties of matter.Atomicphysicsthereforerepresentsnotonlyanareaofimportantfundamental research,buthasfurthermoremanyapplicationswhichhaveessentiallyformedour present technical world. The understanding of materials and their use in daily life, hasmajorimpactofourcultureandourattitudetowardsnatureandourenvironment. Thistextbookisaimedasanintroductiontothemicroscopicworldofatoms,mo- leculesandphotons.Itillustrateshowourknowledgeaboutthemicroscopicstructure ofmatterandradiationcameaboutandwhichcrucialexperimentsforcedanexten- sionandrefinementofexistingclassicaltheories,culminatinginthedevelopmentof quantumtheory,whichisnowacceptedasthebasictheoryofatomicandmolecular physics. The book therefore starts with a short historical review about the role of ex- periments for correcting erroneous ideas and proving the existence of atoms and molecules.Thecloseinteractionbetweenexperimentsandtheoryhasbeenoneofthe reasons forthe rapid development ofatomic physics in the 19th and 20th centuries. Examplesarethekinetictheoryofgases,whichcouldbecompletelyunderstoodby theassumptionofmovingatomsinthegas,orthepostulationofenergyquantainthe radiation field, which could explain the discrepancy between measurements of the spectralenergydistributionofthermalradiationfieldsandclassicalelectrodynamics. The new ideas of quantum physics and their corroboration by experiments are discussed in Chap.3 while the fundamental equations of quantum mechanics and theirapplicationstosomesimpleexamplesareexplainedinChap.4. Atheorycanbebestunderstoodbyapplicationstoarealsituation.InChap.5the quantumtheoryofthesimplestrealsystem,namelythehydrogenatom,ispresented. Hereitisagainillustrated,thatexperimentsenforcedanextensionofquantumme- chanicstoquantumelectrodynamicsinordertounderstandallexperimentalresults. ThedescriptionoflargeratomswithmanyelectronsistreatedinChap.6,whichalso reducesthechemicalpropertiesofchemicalelementstothestructureoftheelectron shellsandexplainswhyallelementscanbearrangedinaperiodictable. The important subject of interaction of matter with radiation is discussed in Chap.7.Thispreparesthegroundfortheexplanationoflasers,treatedinChap.8. Molecules,consistingoftwoormoreatoms,formthebasisforthegreatvarietyof ourworld.TheyarediscussedinChaps.9and10.Inparticularthequestion,whyand howatomscanformstablemolecules,andwhichkindofinteractionoccurs,istreated inmoredetail.InChap.11thedifferentexperimentaltechniquesfortheinvestigation VI Preface of atoms and molecules are presented, in order to give the reader a feeling for the inventive ideas and the necessary experimental skill for their realization. The last chapter presents ashort overview on recent developments in atomic and molecular physics,whichshalldemonstratethatphysicswillbeneveracompleteandfinalized field.Thereisstillmuchtoexploreandnewideasandscientificenthusiasmisneeded, topushtheborderofourknowledgefurtherahead.Someexamplesinthischapteralso illustratepossibleimportantapplicationsofnewideassuchasthequantumcomputer ornewtechniquesoffrequencymetrologyusedintheworldwideglobalpositioning systemGPS. Manypeoplehavehelpedtopublishthisbook.FirstofallIwouldliketothank theteamofLE-TeX,whohavemadethelayout.InparticularUweMatrisch,whohas lookedaftertheeditingprocessandwhohastakencareofmanyhandwrittenremarks andcorrectionsoftheauthorwithgreatpatience.Dr.SchneiderfromSpringer-Verlag hasalwayssupportedthisproject,althoughittooklongerasanticipated. Manythanksgotoallcolleagueswhohavegiventheirpermissiontoreproduce figuresortables. Thisbookisanextended versionofvolume3ofaGermantextbookconsisting of4volumes.Theauthorshopes,thatitwillfindacomparablegoodacceptanceas theGermanversion.Hewillbegratefulforanyreplyofreaders,givingcorrections of possible errors or hints to improvements. Any of such replies will be answered assoonaspossible.Atextbooklivesfromtheactivecollaborationofitsreadersand theauthorlooksforewardtoalivelycorrespondencewithhisreaders.Hehopesthat thisbookcancontributetoabetterunderstandingofthisfascinatingfieldofatoms, moleculesandphotons. Kaiserslautern, August2005 WolfgangDemtröder Contents 1. Introduction 1.1 ContentsandImportanceofAtomicPhysics .................... 1 1.2 Molecules:BuildingBlocksofNature .......................... 3 1.3 SurveyontheConceptofthisTextbook ........................ 4 2. TheConceptoftheAtom 2.1 HistoricalDevelopment ....................................... 7 2.2 ExperimentalandTheoreticalProofsfortheExistenceofAtoms .. 9 2.2.1 Dalton’sLawofConstantProportions .................. 9 2.2.2 TheLawofGay-LussacandtheDefinitionoftheMole .. 11 2.2.3 ExperimentalMethodsfortheDetermination ofAvogadro’sConstant ............................... 12 2.2.4 TheImportanceofKineticGasTheory fortheConceptofAtoms ............................. 17 2.3 CanOneSeeAtoms? ......................................... 19 2.3.1 BrownianMotion .................................... 20 2.3.2 CloudChamber ...................................... 23 2.3.3 MicroscopeswithAtomicResolution ................... 23 2.4 TheSizeofAtoms ........................................... 28 2.4.2 TheSizeofAtomsintheVanderWaalsEquation ....... 28 2.4.2 AtomicSizeEstimationfromTransportCoefficients ..... 28 2.4.3 AtomicVolumesfromX-RayDiffraction ............... 29 2.4.4 ComparisonoftheDifferentMethods .................. 30 2.5 TheElectricStructureofAtoms ............................... 31 2.5.1 CathodeRaysandKanalstrahlen ....................... 32 2.5.2 MeasurementoftheElementaryChargee ............... 33 2.5.3 HowtoProduceFreeElectrons ........................ 34 2.5.4 GenerationofFreeIons ............................... 37 2.5.5 TheMassoftheElectron .............................. 39 2.5.6 HowNeutralistheAtom? ............................. 42 2.6 ElectronandIonOptics ....................................... 43 2.6.1 RefractionofElectronBeams .......................... 43 2.6.2 ElectronOpticsinAxiallySymmetricFields ............ 45 2.6.3 ElectrostaticElectronLenses .......................... 47 2.6.4 MagneticLenses ..................................... 48 2.6.5 ApplicationsofElectronandIonOptics ................ 50 VIII Contents 2.7 AtomicMassesandMassSpectrometers ........................ 51 2.7.1 J.J.Thomson’sParabolaSpectrograph .................. 51 2.7.2 Velocity-IndependentFocusing ........................ 53 2.7.3 FocusingofIonswithDifferentAnglesofIncidence ..... 54 2.7.4 MassSpectrometerwithDoubleFocusing .............. 55 2.7.5 Time-of-FlightMassSpectrometer ..................... 55 2.7.6 QuadrupoleMassSpectrometer ........................ 58 2.7.7 Ion-Cyclotron-ResonanceSpectrometer ................ 60 2.7.8 Isotopes ............................................. 61 2.8 TheStructureofAtoms ....................................... 62 2.8.1 IntegralandDifferentialCrossSections ................. 62 2.8.2 BasicConceptsofClassicalScattering .................. 64 2.8.3 DeterminationoftheChargeDistribution withintheAtomfromScatteringExperiments ........... 68 2.8.4 Thomson’sAtomicModel ............................. 68 2.8.5 TheRutherfordAtomicModel ......................... 70 2.8.6 Rutherford’sScatteringFormula ....................... 71 Summary .......................................................... 74 Problems .......................................................... 76 3. DevelopmentofQuantumPhysics 3.1 ExperimentalHintstotheParticleCharacter ofElectromagneticRadiation .................................. 79 3.1.1 BlackbodyRadiation ................................. 80 3.1.2 Planck’sRadiationLaw ............................... 82 3.1.3 Wien’sLaw .......................................... 86 3.1.4 Stefan–Boltzmann’sRadiationLaw .................... 86 3.1.5 PhotoelectricEffect ................................... 87 3.1.6 ComptonEffect ...................................... 89 3.1.7 PropertiesofPhotons ................................. 91 3.1.8 PhotonsinGravitationalFields ........................ 92 3.1.9 WaveandParticleAspectsofLight ..................... 92 3.2 WavePropertiesofParticles ................................... 94 3.2.1 DeBroglieWavelengthandElectronDiffraction ......... 95 3.2.2 DiffractionandInterferenceofAtoms .................. 96 3.2.3 BraggReflectionandtheNeutronSpectrometer ......... 97 3.2.4 NeutronandAtomInterferometry ...................... 98 3.2.5 ApplicationofParticleWaves ......................... 99 3.3 MatterWavesandWaveFunctions ............................. 100 3.3.1 WavePackets ........................................ 100 3.3.2 TheStatisticalInterpretationofWaveFunctions ......... 103 3.3.3 Heisenberg’sUncertaintyPrinciple ..................... 104 3.3.4 DispersionoftheWavePacket ......................... 107 3.3.5 UncertaintyRelationforEnergyandTime .............. 108 3.4 TheQuantumStructureofAtoms .............................. 109 3.4.1 AtomicSpectra ...................................... 109 3.4.2 Bohr’sAtomicModel ................................. 112 Contents IX 3.4.3 TheStabilityofAtoms ................................ 115 3.4.4 Franck–HertzExperiment ............................. 115 3.5 WhataretheDifferencesBetweenClassical andQuantumPhysics? ........................................ 117 3.5.1 ClassicalParticlePaths VersusProbabilityDensitiesinQuantumPhysics ........ 118 3.5.2 InterferencePhenomena withLightWavesandMatterWaves .................... 119 3.5.3 TheEffectoftheMeasuringProcess ................... 121 3.5.4 TheImportanceofQuantumPhysics forourConceptofNature ............................. 122 Summary .......................................................... 123 Problems .......................................................... 124 4. BasicConceptsofQuantumMechanics 4.1 TheSchrödingerEquation .................................... 127 4.2 SomeExamples .............................................. 129 4.2.1 TheFreeParticle ..................................... 129 4.2.2 PotentialBarrier ...................................... 130 4.2.3 TunnelEffect ........................................ 133 4.2.4 ParticleinaPotentialBox ............................. 136 4.2.5 HarmonicOscillator .................................. 139 4.3 Two-andThree-DimensionalProblems ......................... 142 4.3.1 ParticleinaTwo-dimensionalBox ..................... 142 4.3.2 ParticleinaSphericallySymmetricPotential ............ 143 4.4 ExpectationValuesandOperators .............................. 147 4.4.1 OperatorsandEigenvalues ............................ 148 4.4.2 AngularMomentuminQuantumMechanics ............ 150 Summary .......................................................... 153 Problems .......................................................... 154 5. TheHydrogenAtom 5.1 SchrödingerEquationforOne-electronSystems ................. 157 5.1.1 SeparationoftheCenterofMassandRelativeMotion ... 157 5.1.2 SolutionoftheRadialEquation ........................ 159 5.1.3 QuantumNumbersandWaveFunctionsoftheHAtom .. 161 5.1.4 SpatialDistributionsandExpectationValues oftheElectroninDifferentQuantumStates ............. 163 5.2 TheNormalZeemanEffect ................................... 166 5.3 ComparisonofSchrödingerTheorywithExperimentalResults ... 168 5.4 RelativisticCorrectionofEnergyterms ......................... 170 5.5 TheStern–GerlachExperiment ................................ 171 5.6 ElectronSpin ................................................ 172 5.6.1 Einstein–deHaasEffect ............................... 173 5.6.2 Spin-OrbitCouplingandFinestructure ................. 174 5.6.3 AnomalousZeemanEffect ............................ 177 X Contents 5.7 HyperfineStructure .......................................... 180 5.7.1 BasicConsiderations ................................. 180 5.7.2 Fermi-contactInteraction ............................. 182 5.7.3 MagneticDipole-DipoleInteraction .................... 182 5.7.4 ZeemanEffectofHyperfineStructureLevels ............ 183 5.8 CompleteDescriptionoftheHydrogenAtom ................... 184 5.8.1 TotalWaveFunctionandQuantumNumbers ............ 184 5.8.2 TermAssignmentandLevelScheme ................... 184 5.8.3 LambShift .......................................... 185 5.9 CorrespondencePrinciple ..................................... 190 5.10 TheElectronModelanditsProblems .......................... 191 Summary .......................................................... 193 Problems .......................................................... 195 6. AtomswithMoreThanOneElectron 6.1 TheHeliumAtom ............................................ 197 6.1.1 ApproximationModels ............................... 198 6.1.2 SymmetryoftheWaveFunction ....................... 199 6.1.3 ConsiderationoftheElectronSpin ..................... 200 6.1.4 ThePauliPrinciple ................................... 201 6.1.5 EnergyLevelsoftheHeliumAtom ..................... 202 6.1.6 HeliumSpectrum ..................................... 204 6.2 Building-upPrincipleoftheElectronShellforLargerAtoms ..... 205 6.2.1 TheModelofElectronShells .......................... 205 6.2.2 SuccessiveBuilding-upofElectronShells forAtomswithIncreasingNuclearCharge .............. 206 6.2.3 AtomicVolumesandIonizationEnergies ............... 208 6.2.4 ThePeriodicSystemoftheElements ................... 211 6.3 AlkaliAtoms ................................................ 214 6.4 TheoreticalModelsforMultielectronAtoms .................... 217 6.4.1 TheModelofIndependentElectrons ................... 217 6.4.2 TheHartreeMethod .................................. 218 6.4.3 TheHartree–FockMethod ............................ 219 6.4.4 ConfigurationInteraction .............................. 219 6.5 ElectronConfigurationsandCouplingsofAngularMomenta ..... 220 6.5.1 CouplingSchemesforElectronicAngularMomenta ..... 220 6.5.2 ElectronConfigurationandAtomicStates .............. 225 6.6 ExcitedAtomicStates ........................................ 227 6.6.1 SingleElectronExcitation ............................. 227 6.6.2 SimultaneousExcitationofTwoElectrons .............. 228 6.6.3 Inner-ShellExcitationandtheAugerProcess ............ 229 6.6.4 RydbergStates ....................................... 229 6.6.5 PlanetaryAtoms ..................................... 232 6.7 ExoticAtoms ................................................ 233 6.7.1 MyonicAtoms ....................................... 233 6.7.2 PionicandKaonicAtoms ............................. 235 Contents XI 6.7.3 Anti-hydrogenAtomsandOtherAnti-atoms ............ 235 6.7.4 PositroniumandMyonium ............................ 237 Summary .......................................................... 238 Problems .......................................................... 240 7. EmissionandAbsorptionofElectromagneticRadiationbyAtoms 7.1 TransitionProbabilities ....................................... 242 7.1.1 InducedandSpontaneousTransitions, EinsteinCoefficients .................................. 242 7.1.2 TransitionProbabilitiesandMatrixelements ............ 244 7.1.3 TransitionProbabilitiesforAbsorption andInducedEmission ................................ 246 7.2 SelectionRules .............................................. 247 7.2.1 SelectionRulesfortheMagneticQuantumNumber ...... 248 7.2.2 ParitySelectionRules ................................ 249 7.2.3 SelectionRulesfortheSpinQuantumNumber .......... 250 7.2.4 HigherOrderMultipoleTransitions .................... 251 7.2.5 Magneticdipoletransitions ............................ 252 7.2.6 Two-Photon-Transitions ............................... 253 7.3 LifetimesofExcitedStates .................................... 253 7.4 LineProfilesofSpectralLines ................................. 255 7.4.1 NaturalLinewidth .................................... 256 7.4.2 DopplerBroadening .................................. 258 7.4.3 CollisionBroadening ................................. 260 7.5 X-Rays ..................................................... 263 7.5.1 Bremsstrahlung ...................................... 264 7.5.2 CharacteristicX-Ray-Radiation ........................ 266 7.5.3 ScatteringandAbsorptionofX-Rays ................... 266 7.5.4 X-rayFluorescence ................................... 271 7.5.5 MeasurementsofX-RayWavelengths .................. 271 7.6 ContinuousAbsorptionandEmissionSpectra ................... 273 7.6.1 Photoionization ...................................... 274 7.6.2 RecombinationRadiation ............................. 277 Summary .......................................................... 279 Problems .......................................................... 280 8. Lasers 8.1 PhysicalPrinciples ........................................... 283 8.1.1 ThresholdCondition .................................. 284 8.1.2 GenerationofPopulationInversion ..................... 286 8.1.3 TheFrequencySpectrumofInducedEmission .......... 288 8.2 OpticalResonators ........................................... 289 8.2.1 TheQualityFactorofResonators ...................... 289 8.2.2 OpenOpticalResonators .............................. 290 8.2.3 ModesofOpenResonators ............................ 291 8.2.4 DiffractionLossesofOpenResonators ................. 294 8.2.5 TheFrequencySpectrumofOpticalResonators ......... 294