ebook img

Atomic vapor as a source of tunable, non-Gaussian self-reconstructing optical modes PDF

3.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Atomic vapor as a source of tunable, non-Gaussian self-reconstructing optical modes

Atomic vapor as a source of tunable, non-Gaussian self-reconstructing optical modes Jon D. Swaim1, Kaitlyn N. David1, Erin M. Knutson1, Christian Rios1, Onur Danaci1, and Ryan T. Glasser1,* 1DepartmentofPhysics,TulaneUniversity,NewOrleans,LAUSA70118 *[email protected] 7 ABSTRACT 1 0 2 Inthismanuscript,wedemonstratetheabilityofnonlinearlight-atominteractionstoproducetunablynon-Gaussian,partially n self-healingopticalmodes. Gaussianspatial-modelighttunedneartotheatomicresonancesinhotrubidiumvaporisshownto a resultinnon-Gaussianoutputmodestructuresthatmaybecontrolledbyvaryingeithertheinputbeampowerorthetemperature J oftheatomicvapor. Weshowthattheoutputmodesexhibitadegreeofself-reconstructionafterencounteringanobstructionin 6 thebeampath. TheresultantmodesaresimilartotruncatedBessel-Gaussmodesthatexhibittheabilitytoself-reconstruct earlier upon propagation than Gaussian modes. The ability to generate tunable, self-reconstructing beams has potential ] applicationstoavarietyofimagingandcommunicationscenarios. s c i t p o Introduction . s Coherentlighttunedon,ornear,atomicresonanceshasallowedforthediscoveryandinvestigationofawealthofnonlinear c i optical effects1–9. In addition to cross-action effects in which the presence of one beam alters the behavior of another, s manyself-actioneffectshavebeenthoroughlyinvestigated,includingself-phasemodulation4,self-focusing5,10,11 andself- y h defocusing2,3,12,continuous-wave(CW)on-resonanceenhancement6,andself-inducedtransparency13,14. Whilenonlinear p index-inducedfocusinganddefocusingoflighthavebeenstudiedinbothcoldatomsystems15–17andhotatomicvapor18–21, [ theseeffectshaveonlybeenstudiedindividually,andtoourknowledgenoexperimenttodatehasdemonstratedatunable 1 interplaybetweennonlinearfocusinganddefocusingatafixeddetuningfromanatomicresonance,withaninputbeamthatis v bothconverginganddivergingthroughthenonlinearmedium. Self-actioneffectsstronglymodifythespatialstructureofan 5 opticalbeam,andmayresultinoutputmodeprofilesthatexhibitinterestingopticalpropertiessuchasdiffraction-freeand 1 self-healingbehavior22–24. Theabilityofopticalmodestoreconstructthemselvesafterencounteringanobstructionintheir 7 pathhasbeeninvestigatedinboththeclassical25–28andquantumregimes29,thelatterofwhichhasresultedinademonstration 1 0 ofmorerobustpropagationandrecoveryofquantumentanglement. . Thefirstexperimentalinvestigationintoself-healingBessel-Gauss(BG)beamswascarriedoutbyDurninandco-authors22. 1 0 In their work, significant (annular) aperturing of the incident optical mode produced a BG beam with reduced diffractive 7 spreadingcomparedtothatofaGaussianbeam. Morerecentmethodsinvolveeitherspatiallightmodulators30,31oraxicon 1 (conical)lenses25,32. Insomecases,spatiallightmodulatorscanbedamagedatrelativelylowintensities33,34,thuslimiting : v theintensityofthegeneratednon-Gaussianlight. Further,whilesomeprogresshasbeenmadecombiningnumerousoptical i elements with axicon lenses to produce tunable output self-healing modes, the cone angle of axicon lenses themselves is X inherentlyfixed. Incontrast,hotatomicvaporsprovideanall-opticalmethodofgeneratingnon-Gaussian,BG-likemodes9. r Withthismethod,tworecentmotivatingworksdemonstratedsometunabilityintheshapeoftheoutput20,21.Whileself-focusing a anddefocusingwerethenonlineareffectsconsideredinthetheoreticaldiscussionstherein,adescriptionofthespatial-mode structure of these modes, as well as their ability to self-reconstruct after encountering an obstruction still remains to be investigated. Hereweexperimentallydemonstratetunablegenerationofpartiallyself-reconstructingnon-Gaussianbeams. Toaccomplish this, we focus strong, Gaussian spatial-mode, nearly resonant laser light into a nonlinear medium consisting of hot alkali atoms. Acomplexinterplaybetweenvariousself-actioneffectsinthemediumdeterminestheoveralloutputmodeshape,and accordinglyenablessometunabilityofthegeneratednon-Gaussianbeambyvaryingtheinputopticalpowerorthetemperature oftheatomicmedium. Theabilitytotunethemodeconversionprocessinthismannershouldallowforoptimizationofthe self-reconstruction,whichwedemonstrateforanon-Gaussianbeamencounteringanobstructionatitscenter. Thesefindings suggestthattunable,non-Gaussianlightgeneratedviaatomicvaporsmaybeusefulforexperimentsinquantuminformation,as wellasdemonstratingnewapproachestoopticalcommunicationandimaging. Partial HWP Ti:Sapph BS PBS 500 mm 85Rb 500 mm obstruction CCD A B C To polarization spectroscopy setup Z Figure1. Schematicoftheexperimentalsetupforthegenerationoftunable,self-reconstructingopticalmodes. The modeimages(A,B,andC)wereobtainedwithaninputpowerofP=300mWandacelltemperatureofT =125◦C. Ti:Sapph: Titanium-sapphireCWlaser. BS:Beamsplitter. HWP:Half-waveplate. PBS:Polarizingbeamsplitter. 85Rb: Rubidium-85vaporcell. CCD:Camera. A:Referenceimagebeforetheobstruction. B:Obstructedmodedirectlyafterthe obstruction. C:Reconstructedmodeseveralmetersaftertheobstruction. Results Experimentallayout TheexperimentallayoutisshowninFig.1. LightfromaCWtitanium-sapphirelaseristunedclosetotheD1lineofrubidium andcoupledintoasingle-mode, polarization-maintainingfiberinordertoproduceaGaussianspatialmode. Thebeamis focusedtoaspotsizeof220µmatthecenterofa2.5cmlongrubidium-85cell,whosetemperatureiscontrolledbyaresistive heatingelementandmonitoredbyathermocouple. Asmallportionofthelightissenttoapolarizationspectroscopysetupfor laserlocking(seeMethods),andtheremainingopticalpowerisvariedbythecombinationofahalf-waveplateandpolarizing beamsplitterpriortotherubidiumcell. Atadistance190mmafterthecell,theresultingoutputmodesareimagedwithaCCD camera(2048x1088pixelswitha5.5µmpixelpitch)toinvestigatethespatialmodeprofilesasafunctionofinputpower andcelltemperature. Inthereconstructionexperiments,theoutputbeamisinsteadre-collimatedwitha500mmfocallength lensplacedonefocallengthfromthecenteroftherubidiumcell. Additionally,duetothelargesizeoftheopticalmodes,a 60mmfocallengthlensisplacedapproximately30mminfrontofthecamera. Becauseatomicvaporactsasanonlinear lensintheconversionprocess,thedefocusingstrengthoftheoutputmodevariesdependingonthechoiceofdetuning,input powerandcelltemperature. Whilethishasthebenefitofproducingthedesiredtunabilityofthemodeshapes,forconsistency throughoutallexperimentsthe500mmlensiskeptfixedatonefocallengthfromthefocusoftheunconvertedGaussianbeam. Aremovablecircularobstruction3mmindiameterisplacedinthecenterofthebeam’spath,andboththeunobstructedand reconstructedimagesarerecordedatvariousdistancesfromtheobstruction. Tunablenon-Gaussianbeamgeneration AtypicaloutputspatialmodeisshownatpositionAinFig.1. ThesetruncatedBG-likemodesaregeneratedwhenthelaseris detunedtotheredsideoftherubidiumD1line,overafrequencyrangeontheorderofoneDoppler-broadenedatomiclinewidth. Inthemedium,theKerrnonlinearityresultsinaspatially-varyingrefractiveindex1,whichinturnleadstoaspatially-varying phaseshiftontheincidentbeam.Wesuspectthattheoutputmodeprofilesarisefromacomplexinterplaybetweenthisnonlinear phaseshiftandself-inducedtransparency,whichgivesrisetoaspatially-varyingsoftapertureeffectthatisdependentonthe localintensityoftheinputmode. Interferenceinthefar-fieldthenunderliestheconversionfromaninputGaussianbeamtothe non-Gaussianoutputmode. InFig.2(a-b),weshowtwoseriesofnormalizedintensitycross-sectionsobtainedfromsingle-shotimagesforvarious levelsofinputpowerandcelltemperature. Smoothedtwo-dimensionalintensityprojectionsofthemeasurementsaredisplayed below. Wefindthattheconversionintothenon-Gaussianpatternisenhancedforincreasinglevelsofbothopticalpowerand temperature: ringswithappreciablesignal-to-noiseratiosaregenerallyobservedatopticalpowersaboveP∼200mWand temperaturesaboveT ∼125◦ C.Theseresultsagreewithpreviouswork20,wheretheintensity-dependentphaseshiftand temperature-dependentatomicdensityofthenonlinearmediumwereconsidered. We use numerical fitting to extract the radial positions and intensities (relative to the central peak) of the first ring in theoutputpatternsobtainedatvariouspowersandtemperatures. Weobservethattheatomicvaporactsasanonlinearlens, asshowninFig.2(c-d). Withincreasingopticalpower,theatomicvaporfocusestheconvertedmodeandreducesthesize oftheringinthefar-field. Therelativeintensityofthefirstringincreasesevenmoredramaticallywithincreasingpower, 2/8 (a) (b) (c) (d) Figure2. Tunabilityofnon-Gaussianmodesobtainedfromatomicvaporbyvaryingpowerandtemperature. (a) Imagecross-sectionsasafunctionofincidentopticalpower,keepingthecelltemperaturefixedatT =125◦C.(b) Cross-sectionsasafunctionofcelltemperature,withaconstantinputpowerofP=275mW.(c)Radialpositions(red)and intensitiesofthefirstringrelativetothecentralpeak(blue)versusinputopticalpower. T =125◦C.(d)Radialpositions(red) andrelativesintensitiesofthefirstring(blue)withvaryingcelltemperature. P=250mW.Theshadedregionsindicate uncertaintiesbasedononestandarddeviation. reachingvaluesgreaterthanunityforinputpowersabove300mW.ThemaximumvalueofP=350mWusedthroughout themeasurementswaschosenbasedonthemaximumallowedcouplingpowerforasingle-modefiber. Conversely,wesee thatincreasingthecelltemperatureleadstobeamdefocusing. Thecomplexinterplayofnonlineareffectsisexemplifiedby thefactthatincreasingthecelltemperaturealsoincreasestheatomicdensityofthenonlinearmedium,andweseethatmode conversionisenhancedathighertemperatures,asevidencedbylargerfieldintensityinthefirstringathighertemperature. Inourexperiments,modeconversionisoptimalatatemperatureofaboutT∼125◦C,asshowninFig.2(d). Abovethis temperature,themediumbecomeslesstransparentandlinearabsorptionlimitstheconversion. Giventhattheatomicvaporcreatesanonlinearlensingeffect,thefocusing(ordefocusing)strengthoftheoutputmode dependsonthepositionofthevaporcellrelativetothefocusoftheinputbeam. Ineachexperiment,effortwastakentoposition thecellatthecenteroftheinputbeam’sfocus. ThiswasfoundtoreliablygiveresultssuchasthoseshowninFigs.2(a-b). For themeasurementsinFigs.2(c-d),however,wefoundthatthepositionofthecellcouldbeadjustedtooptimizetheintensity ofthering. Inthiscase,thepositionwassettooptimizetheringintensity,whichreachedamaximumataninputpowerof aboutP ∼325mW.Accordingly,theresultsinFigs.2(c-d)differfromthoseinFigs.2(a-b). Nonetheless,itwasfoundtobe qualitativelytruethatincreasingthepowerandtemperaturewouldresultinnonlinearfocusinganddefocusingofthemode, respectively. Lastly,asexpected,wehavefoundthatthemodeshapescanbetunedbyvaryingthelaserfrequency. Theseresultsare showninthesupplementaryinformation. Forthisreason,thelaserfrequencywaslockedtoafixeddetuningfromtheresonance (seeMethods),topreventfluctuationsand/ordriftinthelaserfrequencyfromalteringtheshapeoftheopticalmodes. Theseobservationsmostlikelystemfromacombinationofnumerouscompetingself-actionseffects. Thecollectionof 3/8 (a) (b) Figure3. Self-inducedtransparencyinatomicvapor. (a)Measuredopticaltransmissionthroughrubidium-85vaporasa functionofinputopticalpowerwithafixedcelltemperatureofT =125◦Candwiththelaserdetuned275MHztotheredside oftheD1line. Theinsetshowsthecorrespondingopticaltransmissionwhenvaryingcelltemperatureandkeepingtheinput powerfixedatP=300mW.(b). OpticaltransmissionasafunctionofinputopticalpowerforT =125◦Candalaserdetuning of-80MHz. Theshadedregionsindicateuncertaintiesbasedonstandarddeviations. theseeffects,however,canbethoughtofasancomplexaperturewhichistunedbytheinteractionsbetweenlightandmatter. Amongtheseinteractions,wefindthatoneofthedominanteffectsisaself-inducedtransparencyofthemedium13,14,35,which effectivelybehavesasasoft-aperturefortheinputbeam6. InFig.3(a),weshowthemeasuredtransmission(i.e.,theratioof theoutputopticalpowertoinputpower)throughtheatomicvaporwhilethecelltemperatureiskeptfixedatT=125◦C.Atlow (∼mW)powerlevels,opticallossesresultingfromatomicabsorptionstronglyattenuatethebeam. Asthepowerisincreased, self-transparencyoccursandthetransmissionincreasesrapidly,reaching50%ataninputpowerofP∼50mW.Forhigher powers,therateofincreaseintransmissionslowsdownandapproachesunity. Acorrespondingtemperaturemeasurement isshownintheinsetofFig.3(a), foraninputpowerofP=300mW.Here, thetransmissionfallsoffpredictablyathigh temperatures. Weconfirmedthetransparencyeffectforfrequencydetuningsof-275MHz(Fig.3(a)and-80MHz(Fig.3 (b),thepredominantfrequenciesusedthroughoutthiswork. Theeffectistypifiedbythefactthat,atagiventemperature,the transmissioncanbeboostedsimplybyincreasingtheintensityoftheopticalbeam. Reconstructionofnon-Gaussiansbeamsfollowinganobstruction Theabilityofanopticalbeamtoregenerateitselffollowingadisturbanceis,initself,aparticularlyinterestingpropertygiven thediffractivenatureoflight. Hereweshowthatournon-Gaussianpatterncanreconstructitselfafterencounteringacircular obstructionplacedatthecenteroftheopticalmode. InFig.4(a),weshowaseriesofnormalizedimageswhichzoominonthe obstructionareaandillustratethereconstructionofthecentralportionofthemodeasittravelsalongthepropagationdirection. ImagesoftheunobstructedandobstructedmodesareshowninthetopandbottomofFig.4(a),respectively. Atz=0m,the (removable)circularblockattentuatesapproximately20%ofthelight,andtheremaininglightincreasinglyregeneratesitself forz>0m. (AseriesoffullimagesisshownintheSupplementaryinformation.) Wequantifythereconstructionbycalculating thetwo-dimensionalcorrelationbetweentheimagesofthe(unobstructed)referenceatz=0mandthepropagatingobstructed beam(seeSupplementaryinformation). TheresultisshowninFig.4(b),wherewehavecarriedouttwocalculations: onetaken overtheentireareaoftheimage,andasecondusingonlytheobstructedarea. Withintheobstructionarea,moderegeneration increaseswithz,reachingamaximumcorrelationof∼94%atz∼7.5m. Ifthecalculationistakenovertheentireimage, maximumcorrelationisobservedatz∼8m,butasawhole,thecorrelationdecreaseswithz. Giventhatthemodesresemble truncated(afterthefirst-andsecond-orderrings)BGmodes,reconstruction,albeitimperfect,afterafinitepropagationdistance isexpected. Next,wecomparethereconstructionofourBG-likemodewiththatofaGaussianmode. Studyingthepropagationof theunobstructedmodesinFig.4(a),oneseesthatthecenterofthemodereachesafocusaroundz ∼5.5m. Therefore, focus we consider the reconstruction of a focused Gaussian mode which has also been attenuated by approximately 20% via a centralobstruction. WeemployGaussianfittingtoextractthefullwidthhalfmaxima(FWHM)ofthecentralpeaksfromthe reconstructingmodesinbothcases. InFig.4(c),weshowtheFWHMfromsingleshotimagesnormalizedtotheirwidthsat 4/8 (a) (b) (c) Figure4. Self-reconstructionofanon-Gaussianmodegeneratedwithatomicvapor. (a)Imagesofunobstructed(top) andobstructed(bottom)modesatvariouspositionsalongthepropagationcoordinate. Thesizeofeachimageis1.5mm×1.5 mm,andtheimagescorrespondtotheregionoverwhichtheobstructedareacorrelationiscalculated. (b)Calculated two-dimensionalcorrelationbetweenthe(unobstructed)referenceatz=0mandtheobstructedmodesatvariouspositionsfor thefullimage(blue)andtheobstructionareaonly(red). Inthelattercase,aparabolicfitrevealsanoptimalcorrelationat z∼7.5m. Theshadedregionsindicateuncertaintiesbasedononestandarddeviation. (c)Fullwidthhalfmaximaofcentral peaksnormalizedtotheirwidthsatz=0m,foraBG-likemodewithafocalpositionz =5.5mandaGaussianmodewith focus z =1.1m. Inbothcases,approximately20%ofthelightisblocked. Theinsetshowscross-sectionsofthereferenceand focus obstructedBG-likemodesattheoptimalreconstructiondistanceofz=7.5m. z=0m,asafunctionofthenormalizeddistancez/z . Inbothcases,moderegenerationisassociatedwithanincreaseinthe focus FWHM,whichslowsafterthefocusandeventuallyincreasesagainduetodiffraction. Importantly,thenormalizedFWHMof thenon-GaussianmodereachesunitypriortotheGaussian,bymorethanafactoroftwoinnormalizeddistance. Thepointof maximumimagecorrelationforthenon-Gaussiancase(z∼7.5m)correspondstothepointz/z =1.4inFig.4(c). Atthis focus point,thenormalizedFWHMis∼0.8forthenon-Gaussianmode(seetheinsetofFig.4(c)),whereasitisonly∼0.7forthe Gaussianmode. Discussion Inthismanuscriptwehaveexperimentallydemonstratedthatatomicvapormaybeusedtogeneratetunableself-reconstructing opticalbeams. Whilethecompletedynamicsofnear-resonantlightinteractingwithmulti-levelatomicsystemsisreasonably complex,theseresultssuggestthatnonlinearphaseshiftsandself-inducedtransparencyaredominanteffects,producingan effectivesoftaperturingoftheincidentopticalmode,whichleadstotheconversionintoatruncatedBGmode. Althoughthis 5/8 truncationisexpectedtoworsenthemode’sself-healingabilitywhencomparedtoanidealBGmode,wenonethelessobserve imagecorrelationsofupto94%inthecentralportionoftherecoveredmodeprofileandupto61%acrosstheentireimage. Theflexibleapproachtakenhereisadvantageouslyrobusttohighlevelsofopticalpower,andthusallowsonetocontrolthe outputmodeprofilebyvaryingtheopticalpower,aswellasthetemperatureoftheatomicvaporandthelaserfrequency. Inthis manner,thereconstructionofthemodeafterinteractingwithanobstructioncanbeoptimized,whichmayseeapplicationsin futureexperimentsinvolvingtherecoveryofinformationinthespatialprofileofthemodes. Weexpectthatsuchoptimization couldfurtherimprovethecorrelationsreportedhere. Methods LockingtotheatomicresonancesofrubidiumisachievedwithapolarizationspectroscopysetupasdescribedinRefs.36–38. Imagesarerecordedusingabeamprofiler(EdmundOptics89-308)withthelaserlockedatafixeddetuning∆/2π=−80MHz fromtheredsideoftheD1lineofrubidium-85. InFig.3,dataisalsoshownforaseconddetuningof-275MHz. Ineach measurement,aseriesoftenimagesacquiredoveraspanofapproximately1sarerecorded,andthedataanderrorbarsin Figs.2and 4representmeanvaluesandstandarddeviations,respectively,basedonthesetenimages. Everyimageisacquired usinganintegrationtimeof10ms,andalloftheactualimagesshowninthismanuscriptaresingleshots. Intheself-healingexperiments,theobstructionismadebycoatingthesurfaceofacircularobject(∼3mmindiameter) withacrylicpaint, andthencontactingtheobjectwitha170 µmthick, 22mm×22mmprecisionmicroscopecoverslip (ThorlabsCG15CH).Theobstructionisplacedonaflip-mountsothatboththereconstructingandtheunobstructedpropagating modes may be imaged. In comparing the reconstruction with that of a Gaussian beam, the obstruction is made using the sameapproach,butwiththediameterchosensothattheobjectblocks∼20%ofthelight,asinthenon-Gaussianmodecase. The FWHM in Fig. 4 are found via Gaussian fitting, and the focal positions z are taken to be the positions where the focus unobstructedFWHMofthecentralpeaksareminimal. References 1. Boyd,R. Nonlinearoptics(ElsevierScience,2003),secondedn. 2. Gordon,J.P.,Leite,R.C.C.,Moore,R.S.,Porto,S.P.S.&Whinnery,J.R. Long-TransientEffectsinLaserswithInserted LiquidSamples. JournalofAppliedPhysics36,3(1965). 3. Callen,W.R.,Huth,B.G.&Pantell,R.H. OpticalPatternsofThermallySelf-DefocusedLight. AppliedPhysicsLetters 11,103(1967). 4. Durbin,S.D.,Arakelian,S.M.&Shen,Y.R. Laser-induceddiffractionringsfromanematic-liquid-crystalfilm. Optics Letters6,411(1981). 5. Boshier,M.&Sandle,W. Self-focussinginavapouroftwo-stateatoms. OpticsCommunications42,371–376(1982). 6. LeBerre,M.etal. Continuous-waveoff-resonanceringsandcontinuous-waveon-resonanceenhancement. Journalofthe OpticalSocietyofAmericaB1,591(1984). 7. Santamato, E. & Shen, Y. R. Field-curvature effect on the diffraction ring pattern of a laser beam dressed by spatial self-phasemodulationinanematicfilm. OpticsLetters9,564(1984). 8. Deng,L.G.,He,K.,Zhou,T.&Li,C. Formationandevolutionoffar-fielddiffractionpatternsofdivergentandconvergent Gaussianbeamspassingthroughself-focusingandself-defocusingmedia. JournalofOpticsA:PureandAppliedOptics7, 409–415(2005). 9. Nascimento,C.M.etal. Experimentaldemonstrationofnoveleffectsonthefar-fielddiffractionpatmternsofaGaussian beaminaKerrmedium. JournalofOpticsA:PureandAppliedOptics8,947–951(2006). 10. Shen,Y. Self-focusing: Experimental. ProgressinQuantumElectronics4,1–34(1975). 11. Marburger,J. Self-focusing: Theory. ProgressinQuantumElectronics4,35–110(1975). 12. Yu,D.,Lu,W.&Harrison,R.G. Analysisofdarkspotformationinabsorbingliquidmedia. JournalofModernOptics45, 2597–2606(1998). 13. McCall,S.L.&Hahn,E.L. Self-InducedTransparencybyPulsedCoherentLight. PhysicalReviewLetters18,908–911 (1967). 14. McCall,S.L.&Hahn,E.L. Self-InducedTransparency. PhysicalReview183,457–485(1969). 15. Labeyrie,G.etal. NonlinearbeamshapingbyacloudofcoldRbatoms. TheEuropeanPhysicalJournalD22,473–483 (2003). 6/8 16. Labeyrie,G.etal. Nonlinearlensingmechanismsinacloudofcoldatoms. TheEuropeanPhysicalJournalD41,337–348 (2007). 17. Labeyrie,G.&Bortolozzo,U. Lightself-trappinginalargecloudofcoldatoms. OpticsLetters36,2158(2011). 18. Grischkowsky,D. Self-FocusingofLightbyPotassiumVapor. PhysicalReviewLetters24,866–869(1970). 19. Bjorkholm,J.E.&Ashkin,A.A. cwSelf-FocusingandSelf-TrappingofLightinSodiumVapor. PhysicalReviewLetters 32,129–132(1974). 20. Zhang,Y.etal. Researchoffar-fielddiffractionintensitypatterninhotatomicRbsample. Opticsexpress(2015). 21. Zhang,Q.etal. Opticallimitingusingspatialself-phasemodulationinhotatomicsample. Optics&LaserTechnology88, 54–60(2017). 22. Durnin,J.,Miceli,J.J.&Eberly,J.H. Diffraction-freebeams. PhysicalReviewLetters58,1499–1501(1987). 23. Gori,F.,Guattari,G.&Padovani,C. Bessel-Gaussbeams. OpticsCommunications64,491–495(1987). 24. MacDonald,R.,Boothroyd,S.,Okamoto,T.,Chrostowski,J.&Syrett,B. InterboardopticaldatadistributionbyBessel beamshadowing. OpticsCommunications122,169–177(1996). 25. Bouchal,Z.,Wagner,J.&Chlup,M. Self-reconstructionofadistortednondiffractingbeam. OpticsCommunications151, 207–211(1998). 26. Litvin,I.A.,McLaren,M.G.&Forbes,A. AconicalwaveapproachtocalculatingBessel-Gaussbeamreconstruction aftercomplexobstacles. OpticsCommunications282,1078–1082(2009). 27. Chu,X. Analyticalstudyontheself-healingpropertyofBesselbeam. TheEuropeanPhysicalJournalD66,259(2012). 28. Wen,W.&Chu,X. Quantitativecomparisonofself-healingabilitybetweenBessel-GaussianbeamandAirybeam. Annals ofPhysics360,549–555(2015). 29. McLaren, M., Mhlanga, T., Padgett, M. J., Roux, F. S. & Forbes, A. Self-healing of quantum entanglement after an obstruction. NatureCommunications5(2014). 30. Davis,J.A.,Guertin,J.&Cottrell,D.M. Diffraction-freebeamsgeneratedwithprogrammablespatiallightmodulators. AppliedOptics32,6368(1993). 31. Vaity,P.&Rusch,L. Perfectvortexbeam: FouriertransformationofaBesselbeam. Opt.Lett.40,597–600(2015). 32. McLeod,J. Theaxicon: Anewtypeofopticalelement. JournaloftheOpticalSocietyofAmerica(1917-1983)44,592 (1954). 33. Beck,R.J.etal. Applicationofcooledspatiallightmodulatorforhighpowernanosecondlasermicromachining. Optics Express18,17059(2010). 34. Hamamatsu. X10468SeriesSpatialLightModulatorTechnicalInformation. URLhttp://www.hamamatsu.com/ sp/hpe/community/lcos/tech_note/LCOS_SLM_Tech_Info.pdf. 35. McClelland,D.E.,Ballagh,R.J.&Sandle,W.J. Simpleanalyticapproximationtocontinuous-waveon-resonancebeam reshaping. JournaloftheOpticalSocietyofAmericaB3,212(1986). 36. Wieman,C.&Ha¨nsch,T.W. Doppler-FreeLaserPolarizationSpectroscopy. PhysicalReviewLetters36,1170–1173 (1976). 37. Pearman, C.P.etal. Polarizationspectroscopyofaclosedatomictransition: applicationstolaserfrequencylocking. JournalofPhysicsB:Atomic,MolecularandOpticalPhysics35,5141–5151(2002). 38. Ratnapala,A.etal. Laserfrequencylockingbydirectmeasurementofdetuning. OpticsLetters29,2704(2004). Acknowledgments WeacknowledgefundingfromtheLouisianaStateBoardofRegentsandNorthropGrummanNG-NEXT. Author Contributions J.D.Sperformedtheexperiments,withcontributionsfromK.N.D.,E.M.K.andC.R.J.D.Sperformedthedataanalysis,with contributionsfromO.D.,andJ.D.SandR.T.Gwrotethemanuscript. R.T.G.conceivedtheproject. 7/8 Additional Information SupplementaryinformationaccompaniesthispaperatINSERTURL. Competingfinancialinterests: Theauthorsdeclarenocompetingfinancialinterests. 8/8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.