Atom interferometer phase in the presence of proof mass B. Dubetsky [email protected] (Dated: May 6, 2015) Thisispresentedthejustificationoftheexpressionfortheatominterferometerphaseinthepres- enceofproofmassusedinhttp://arxiv.org/abs/1407.7287. Quantumcorrectionstothatexpression arealsoderived. Thecorrectionsallowonetocalculatenumericallyatominterferometerphasewith accuracy 1ppm or better. 5 1 0 2 I. MAIN RELATIONS y a For times between the Raman pulses the atomic density matrix evolves as M i~ρ˙ =[H,ρ], (1) 5 where ] p2 h H = +U(~x,t) (2) p 2M a - m is Hamiltonian, ~p,M and U are, respectively, atomic momentum, mass and gravity potential. In the Wigner repre- a o sentation t a 1 1 1 . ρ(~x,p~,t)= d~sρ ~x+ ~s,~x− ~s,t exp(−ip~·~s/~) (3) s (2π~)3 2 2 c Z (cid:18) (cid:19) i s one finds [1], Sec. III y h p p~ [ ∂t+ ∂~x−∂~xU(~x,t)∂p~+Q ρ(~x,p~,t)=0, (4a) (cid:26) Ma (cid:27) v2 Q=−(i~)−1 U ~x+ 1i~∂p~,t −U ~x− 1i~∂p~,t +∂~xU(~x,t)∂p~. (4b) 2 2 7 (cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) 6 When the size of the gravity potential 5 7 L∼U(~x)/|∂ U(~x)| (5) 0 ~x . 1 is sufficiently large so that 0 ~ 5 ≪1 (6) 1 ∆pL : v where ∆p is a size of the momentum dependence of the density matrix, one expand over the ∂ term and gets i p~ X approximately r a ~2 ′ Q ≈ − χ (~x,t)∂ ∂ ∂ (7a) 24 ikl p~i p~k p~l ′ χ (~x,t) = −∂ ∂ ∂ U(~x,t) (7b) ikl xi xk xl An implicit summation conventionof Eq. (7) will be usedin allsubsequent equations. Repeated indices and symbols appearingontheright-hand-side(rhs)ofanequationaretobesummedover,unlesstheyalsoappearontheleft-hand side (lhs) of that equation. For the relative weight of Q−term one finds Q ~2 ∼ ≪1, (8) ∂ U(~x,t)∂ 24(L∆p)2 ~x p~ so that one can consider Q−term as a small perturbation and accept that ρ(~x,~p,t)=ρ (~x,p~,t)+ρ (~x,p~,t), (9) 0 Q 2 where ρ (~x,~p,t) is unperturbed density matrix obeying equation 0 ~p ∂ + ∂ −∂ U(~x,t)∂ ρ (~x,~p,t)=0 (10) t M ~x ~x p~ 0 (cid:26) a (cid:27) and ρ (~x,p~,t) is a perturbation evolving as Q p~ ∂ + ∂ −∂ U(~x,t)∂ ρ (~x,p~,t)=−Qρ (~x,~p,t) (11) t M ~x ~x p~ Q 0 (cid:26) a (cid:27) ′ We assume that density matrix is knownat some precedingtime t, i.e. Eqs. (10, 11) are subjectto initial conditions ′ ′ ρ (~x,~p,t) = ρ(~x,~p,t), (12a) 0 ′ ρ (~x,~p,t) = 0. (12b) Q Solution of the homogeneous Eq. (10) is given by [1], Sec III ρ (~x,p~,t)=ρ R~(~x,~p,t′,t),P~(~x,p~,t′,t),t′ , (13) 0 0 (cid:16) (cid:17) where R~(~x,~p,t ,t ),P~(~x,~p,t ,t ) areatomic classicalpositionandmomentum attime t subject to initial condi- 1 2 1 2 1 tions {n~x,p~} at time t2. Atomic classoical trajectory, evidently, obeys the multiplication law, R~ R~(~x,~p,t′,t′′),P~ (~x,p~,t′,t′′),t,t′ = R~ (~x,~p,t,t′′). (14) P~ P~ (cid:26) (cid:27)(cid:16) (cid:17) (cid:26) (cid:27) Consider now solution of the Eq. (11). Since Q−term is initially equal 0, solution of the inhomogeneous Eq. (11) ′ ′′ contains only the stimulated part consisting of contributions produced at different times t < t < t. Since operator inside the curly brackets in Eq. (11) is a full time derivative, d p~ =∂ + ∂ −∂ U(~x,t)∂ t ~x ~x p~ dt Ma ′′ ′′ ′′ in the time interval [t ,t +dt ] one produces contributions to the Q−term ′′ ′′ ′′ ′′ dρ (~x,~p,t +dt )=−Qρ (~x,~p,t )dt . (15) Q 0 ′′ ′′ Later on this contribution evolves freely [i.e. satisfies Eq.(11) subject to the initial condition (15) at time t +dt ] and at time t one finds for this contribution ~2 dρ (~x,p~,t)= dt′′ χ′ ~ξ,t′′ ∂ ∂ ∂ ρ ~ξ,~π,t′′ . (16) Q 24 ikl ~πi ~πk ~πl 0 ~ξ=R~(~x,p~,t′′,t),~π=P~(~x,p~,t′′,t) h (cid:16) (cid:17) (cid:16) (cid:17)i Total solution is a sum of all these contributions ~2 t ρ (~x,p~,t)= dt′′ χ′ ~ξ,t′′ ∂ ∂ ∂ ρ ~ξ,~π,t′′ . (17) Q 24Zt′ h ikl(cid:16) (cid:17) ~πi ~πk ~πl 0(cid:16) (cid:17)i~ξ=R~(~x,p~,t′′,t),~π=P~(~x,p~,t′′,t) Substituting here solution (13) for ρ one finds 0 ~2 t ρ (~x,~p,t)= dt′′ χ′ ~ξ,t′′ ∂ ∂ ∂ ρ R~ ~ξ,~π,t′,t′′ ,P~ ~ξ,~π,t′,t′′ ,t′ (18) Q 24Zt′ h ikl(cid:16) (cid:17) ~πi ~πk ~πl 0(cid:16) (cid:16) (cid:17) (cid:16) (cid:17) (cid:17)i~~πξ =( RP~~ )(~x,p~,t′′,t) II. AI PHASE π π Considernowanatomcloudlaunchedattimet ,andinteractingwith −π− sequenceofRamanpulsesapplied 0 2 2 at times τ ={t +t ,t +t +T,t +t +2T}, (19) 0 1 0 1 0 1 3 where t is time delay between cloud launch and 1st Raman pulse. T is time delay between pulses. We assume that 1 Raman pulses produce coherence between two hyperfine sublevels g and e of the atomic ground state manifold, and that initially atomic density matrix (3) is given by ρ (~x,p~,t )=f(~x,p~), (20a) gg 0 ρ (~x,p~,t )=ρ (~x,~p,t )=0. (20b) eg 0 ee 0 π One finds, for example in [1], that after −pulse applied at time t, density matrix elements jump to the values 2 1 ~~k ρ (~x,~p,t+0)= ρ (~x,p~,t−0)+ρ ~x,p~−~~k,t−0 +Re iexp −i ~k·~x−δ t−φ ρ ~x,~p− ,t−0 , ee 2 ee gg 12 eg 2 ( !) h (cid:16) (cid:17)i h (cid:16) (cid:17)i (21a) 1 ~~k ρ (~x,~p,t+0)= ρ ~x,~p+~~k,t−0 +ρ (~x,~p,t−0) −Re iexp −i ~k·~x−δ t−φ ρ ~x,~p+ ,t−0 , gg 2 ee gg 12 eg 2 ( !) h (cid:16) (cid:17) i h (cid:16) (cid:17)i (21b) i ~~k ~~k ρ (~x,p~,t+0)= exp i ~k·~x−δ t−φ ρ ~x,p~+ ,t−0 −ρ ~x,~p− ,t−0 eg 2 12 ee 2 gg 2 " ! !# h (cid:16) (cid:17)i 1 + ρ (~x,p~,t−0)+exp 2i ~k·~x−δ t−φ ρ (~x,~p,t−0) , (21c) 2 eg 12 ge n h (cid:16) (cid:17)i o and after π−pulse, the density matrix elements jump to the values ρ (~x,p~,t+0)=ρ ~x,~p−~~k,t−0 , (22a) ee gg (cid:16) (cid:17) ρ (~x,p~,t+0)=ρ ~x,~p+~~k,t−0 , (22b) gg ee (cid:16) (cid:17) ρ (~x,p~,t+0)=exp 2i ~k~x−δ t−φ ρ (~x,~p,t−0), (22c) eg 12 ge h (cid:16) (cid:17)i where~kiseffectivewavevector,δ isdetuningbetweenfields’frequencydifferenceandhyperfinetransitionfrequency, 12 φ is phase difference between traveling components of the Raman field. We allow pulses to have different detunings (i) and phases δ ,φ (i=1,2,3). 12 i Our purpose is to obtain the atomic density matrix of the excited state ρ (~x,~p,τ +0). We will achieve this by ee 3 applying consequently Eqs. (13, 18) for density matrix evolution between Raman pulses and before the 1st Raman pulse, and Eqs. (21, 22) for density matrix jumps after the pulse. Before the first pulse, the density matrix becomes ρ (~x,p~,τ −0)=f R~(~x,p~,t ,τ ),P~(~x,p~,t ,τ ) (23) gg 1 0 1 0 1 (cid:16) (cid:17) π After this −pulse 2 1 ρ (~x,p~,τ +0) = f R~ ~x,p~−~~k,t ,τ ,P~ ~x,p~−~~k,t ,τ , (24a) ee 1 2 0 1 0 1 1 (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17) ρ (~x,p~,τ +0) = f R~(~x,~p,t ,τ ),P~(~x,p~,t ,τ ) , (24b) gg 1 2 0 1 0 1 (cid:16) (cid:17) i ~~k ~~k ρ (~x,p~,τ +0) = − exp i ~k·~x−δ(1)τ −φ f R~ ~x,p~− ,t ,τ ,P~ ~x,p~− ,t ,τ . (24c) eg 1 2 12 1 1 2 0 1! 2 0 1!! h (cid:16) (cid:17)i One uses this density matrix as an initial value at moment τ for the free evolution between 1st and 2nd pulses of 1 the unperturbed density matrix ρ (~x,~p,τ +0)=ρ(~x,~p,τ +0) (25) 0 1 1 4 We now consider Q−term (18) before the second pulse action. From Eqs. (18, 24c, 25) one obtains ~2 τ2 ρ (~x,p~,τ −0)=−i dt Qeg 2 48 Zτ1 exp i ~k·R~ ~ξ,~π,τ ,t −δ(1)τ −φ 1 12 1 1 h (cid:16) (cid:16) (cid:17) ~~k (cid:17)i ×χ′ikl(cid:16)~ξ,t(cid:17)∂~πi∂~πk∂~πl×fR~ R~(cid:16)~ξ,~π,τ1,t(cid:17),P~ (cid:16)~ξ,~π,τ1,t(cid:17)− ~2~k,t0,τ1!, (26) P~ R~ ~ξ,~π,τ ,t ,P~ ~ξ,~π,τ ,t − ,t ,τ 1 1 0 1 (cid:16) (cid:17) (cid:16) (cid:17) 2 ! ~~πξ =( RP~~ )(~x,p~,t,τ2) In the Eq. (26), the derivative on the momentum ~π is of the order of ∆p−1, where ∆p isthemomentum size of the factor in brackets. This factor has two terms, phase-factor and atom distribution f. Initially, for t=τ phase-factor 1 is ~π−independent (because R~ ~ξ,~π,τ ,τ =~ξ) and derivative is of the order of 1 1 (cid:16) (cid:17) ∂ ∼p−1, (27) ~πiThermal 0 where p =(2M k T )1/2 (28) 0 a B c is thermal momentum, the T is cloud temperature. c Consider now the phase factor exp i ~k·R~ ~ξ,~π,τ ,t −δ(1)τ −φ at t − τ ∼ T. For the purpose of the 1 12 1 1 1 estimates lets ”turn off” the gravity fielhd.(cid:16)Then(cid:16)atom traj(cid:17)ectory evidentl(cid:17)yiequal to ~π R~ ~ξ,~π,τ ,t =~ξ−(t−τ ) (29) 1 1 M a (cid:16) (cid:17) ~π and the phase factor acquires Doppler phase~k· (t−τ ). It becomes a rapidly oscillating function of momentum 1 M a ~π having period of the order of p ∼M /kT (30) D a and phase factor derivative is of magnitude ∂ ∼p−1. (31) ~πiDoppler D For the 133Cs at temperature T ≈3µK, k =1.4743261770∗107m−1,T =160ms one finds C ∂~πiThermal ∼ 1 ≈2∗10−5 ≪1, (32) ∂ kv T ~πiDoppler 0 wherev =p /M isthermalvelocity. Condition(32)meansthattimeseparationbetweenpulsesT issufficientlylarge 0 0 a to be in the Doppler limiting case, when Doppler phase kv T ≫1. In this limit atomic distribution over momentum 0 is sufficiently smooth to neglect its derivation, and throughout the text we include only contribution to the Q−term arisingfromthe derivative ofphase factor. Forthis reasonwedid notconsiderabovethe Q−termfor cloudevolution before 1st pulse. As we will show, the atomic levels’ populations (ρ and ρ ) have no phase factor at t < t < τ , ee gg 0 3 and therefore Q−term arises only from atomic coherence ρ . Using the Doppler limiting case (32) results in eg AI phase pretty much independent of the atomic momentum and spatial distribution. 5 Calculating derivatives, one obtains ~2 τ2 ρ (~x,~p,τ −0)=− dt Qeg 2 48 Zτ1 × ~k ~k ~k χ′ ~ξ,t ∂ R~ ~ξ,~π,τ ,t ∂ R~ ~ξ,~π,τ ,t ∂ R~ ~ξ,~π,τ ,t u v w ikl ~πi u 1 ~πk v 1 ~πl w 1 h (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17)i~~πξ =( RP~~ )(~x,p~,t,τ2) exp i ~k·R~ ~ξ,~π,τ ,t −δ(1)τ −φ 1 12 1 1 h (cid:16) (cid:16) (cid:17) ~~k (cid:17)i ×fR~ R~(cid:16)~ξ,~π,τ1,t(cid:17),P~ (cid:16)~ξ,~π,τ1,t(cid:17)− ~2~k,t0,τ1!, (33) P~ R~ ~ξ,~π,τ ,t ,P~ ~ξ,~π,τ ,t − ,t ,τ 1 1 0 1 (cid:16) (cid:17) (cid:16) (cid:17) 2 ! ~~πξ =(PR~~ )(~x,p~,t,τ2) In the described approximation, the derivative no longer acts on the term inside the curly brackets. Applying the multiplication law 14, we find that R~ R~ ~ξ,~π,τ ,t = (~x,p~,τ ,τ ). (34) (cid:26) P~ (cid:27)(cid:16) 1 (cid:17)~ξ=R~(~x,p~,t,τ2),~π=P~(~x,p~,t,τ2) (cid:26)P~ (cid:27) 1 2 The expression inside the curly brackets of Eq. (33) becomes t−independent and the Q−term in front of the 2nd pulse is then given by ~2 ρ (~x,p~,τ −0)=− exp i ~k·~ξ−δ(1)τ −φ f ~ξ,~π Qeg 2 48n h (cid:16) 12 1 1(cid:17)i (cid:16) (cid:17)o~ξ = R~(~x,p~,τ1,τ2) ~π P~(~x,p~,τ1,τ2)−~~k/2 τ2 × dt ~k ~k ~k χ′ ~ξ,t ∂ R~ ~ξ,~π,τ ,t ∂ R~ ~ξ,~π,τ ,t ∂ R~ ~ξ,~π,τ ,t (35) u v w ikl ~πi u 1 ~πk v 1 ~πl w 1 Zτ1 h (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17)i~~πξ =(PR~~ )(~x,p~,t,τ2) From Eqs. (13, 24, 14) 1 ρ (~x,p~,τ −0)= f R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ , (36a) ee 2 2 0 1 0 1 ~ξ=R~(~x,p~,τ1,τ2),~π=P~(~x,p~,τ1,τ2)−~~k (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17) 1 ρ (~x,p~,τ −0)= f R~(~x,p~,t ,τ ),P~ (~x,p~,t ,τ ) , (36b) gg 2 2 0 2 0 2 (cid:16)i (cid:17) ρ (~x,~p,τ −0)=− exp i ~k·~ξ−δ(1)τ −φ 0eg 2 2 12 1 1 n h (cid:16) (cid:17)i ×f R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ (36c) 0 1 0 1 ~ξ=R~(~x,p~,τ1,τ2),~π=P~(~x,p~,τ1,τ2)−~~k/2 (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)o From Eqs. (22) after the 2nd pulse density matrix jumps to the value 6 1 ρ (~x,p~,τ +0) = f R~ ~x,p~−~~k,t ,τ ,P~ ~x,~p−~~k,t ,τ , (37a) ee 2 2 0 2 0 2 1 (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17) ρ (~x,p~,τ +0) = f R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ (37b) gg 2 2 0 1 0 1 ~ξ=R~(~x,p~+~~k,τ1,τ2),~π=P~(~x,p~+~~k,τ1,τ2)−~~k (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17) i ρ (~x,p~,τ +0) = exp i ~k· 2~x−~ξ −2δ(2)τ +δ(1)τ −2φ +φ 0eg 2 2 12 2 12 1 2 1 n n h (cid:16) (cid:17) io ×f R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ , (37c) 0 1 0 1 ~ξ=R~(~x,p~,τ1,τ2),~π=P~(~x,p~,τ1,τ2)−~~k/2 ~2(cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)o ρ (~x,p~,τ +0) = − exp i ~k· 2~x−~ξ −2δ(2)τ +δ(1)τ −2φ +φ Qeg 2 48 12 2 12 1 2 1 n n h (cid:16) (cid:17) io ×f R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ 0 1 0 1 ~ξ=R~(~x,p~,τ1,τ2),~π=P~(~x,p~,τ1,τ2)−~~k/2 (cid:16)τ2 (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)o × dt ~k ~k ~k χ′ ~ξ,t u v w ikl Zτ1 h (cid:16) (cid:17) ∂ R~ ~ξ,~π,τ ,t ∂ R~ ~ξ,~π,τ ,t ∂ R~ ~ξ,~π,τ ,t . (37d) ~πi u 1 ~πk v 1 ~πl w 1 (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17)i~~πξ =(PR~~ )(~x,p~,t,τ2) ConsidernowQ−termproducedduringfreeevolutioninsidethetimeinterval[τ2,τ3].Eachdensitymatrixelement (37) produces Q−term. However,since diagonalmatrix elements (37a, 37b) containno rapidly oscillating in momen- tumspacephasefactorsandweneglecttheirQ−terms. Term(37d)isalreadylinearinQtermandcanproduceonly higher order non linear in Q contributions, which we are not including yet. So one has to consider only the Q−term ′ produced by coherence (37c), which we denote as ρ . From Eq. (18) one finds Qeg ~2 τ3 ρ′ (~x,~p,τ −0) = i dt χ′ ~ξ,t ∂ ∂ ∂ exp i 2~k·R~ ~ξ,~π,τ ,t Qeg 3 48 ikl ~πi ~πk ~πl 2 Zτ2 n (cid:16) (cid:17) n h (cid:16) (cid:17) − ~k·R~ ~ξ,~π,τ ,t −2δ(2)τ +δ(1)τ −2φ +φ 1 12 2 12 1 2 1 (cid:16) (cid:17) io ×f R~ R~ R~ ~ξ,~π,τ ,t ,P~ ~ξ,~π,τ ,t ,τ ,τ , 2 2 1 2 (cid:16) (cid:16) (cid:16) (cid:16) (cid:17) (cid:16) (cid:17) ~~k (cid:17) P~ R~ ~ξ,~π,τ ,t ,P~ ~ξ,~π,τ ,t ,τ ,τ − ,t ,τ , 2 2 1 2 0 1 2 ! (cid:16) (cid:16) (cid:17) (cid:16) (cid:17) (cid:17) P R~ R~ ~ξ,~π,τ ,t ,P~ ~ξ,~π,τ ,t ,τ ,τ , 2 2 1 2 (cid:16) (cid:16) (cid:16) (cid:17) (cid:16) (cid:17) (cid:17)~~k P~ R~ ~ξ,~π,τ ,t ,P~ ~ξ,~π,τ ,t ,τ ,τ − ,t ,τ (38) 2 2 1 2 0 1 (cid:16) (cid:16) (cid:17) (cid:16) (cid:17) (cid:17) 2 !) ~ξ = R~ (~x,p~,t,τ3) ~π (P~ ) where we used the multiplication law (14), R~ R~ ~ξ,~π,τ ,t ,P~ ~ξ,~π,τ ,t ,τ ,τ =R~ ~ξ,~π,τ ,t . (39) 2 2 1 2 1 (cid:16) (cid:16) (cid:17) (cid:16) (cid:17) (cid:17) (cid:16) (cid:17) In Eq. (38) we differentiate over momentum ~π only the rapidly oscillating exponent. After differentiation, we apply the multiplication law two more times to the phase factor and distribution f, namely R~ R~ ~ξ,~π,τ ,t = (~x,~p,τ ,τ ), (40) (cid:26)P~ (cid:27)(cid:16) 2 (cid:17)~~πξ =( RP~~ )(~x,p~,t,τ3) (cid:26)P~ (cid:27) 2 3 and therefore R~ R~ ~ξ,~π,τ ,t ,P~ ~ξ,~π,τ ,t ,τ ,τ (cid:26)P~ (cid:27)(cid:16) (cid:16) 2 (cid:17) (cid:16) 2 (cid:17) 1 2(cid:17)~~πξ =( RP~~ )(~x,p~,t,τ3) = R~ R~(~x,p~,τ ,τ ),P~(~x,p~,τ ,τ ),τ ,τ = R~ (~x,~p,τ ,τ ) (41) P~ 2 3 2 3 1 2 P~ 1 3 (cid:26) (cid:27)(cid:16) (cid:17) (cid:26) (cid:27) 7 ′ to find out that these terms become t−independent. As a result one gets for Q−term ρ before the 3-rd pulse Qeg ~2 ρ′ (~x,p~,τ −0) = − exp i ~k· 2R~(~x,~p,τ ,τ )−~ξ −2δ(2)τ +δ(1)τ −2φ +φ Qeg 3 48 2 3 12 2 12 1 2 1 n n h (cid:16) (cid:17) io ×f R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ 0 1 0 1 (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)o~~πξ =(PR~~ )~ξ=R~(~x,p~,τ1,τ3),~π=P~(~x,p~,τ1,τ3)−~~k/2 τ3 × dt χ′ ~ξ,t ~k ~k ~k ∂ R~ ~ξ,~π,τ ,t −2R~ ~ξ,~π,τ ,t ikl u v w ~πi u 1 u 2 Zτ2 n (cid:16) (cid:17) h (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)i × ∂ R~ ~ξ,~π,τ ,t −2R~ ~ξ,~π,τ ,t ~πk v 1 v 2 h (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)i × ∂ R~ ~ξ,~π,τ ,t −2R~ ~ξ,~π,τ ,t . (42) ~πl w 1 w 2 h (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)io~~πξ =( RP~~ )(~x,p~,t,τ3) Applying Eq. (13) one finds that other matrix elements (37) in front ofthe3rd pulse become 1 ρ (~x,~p,τ −0) = f R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ ; (43a) ee 3 2 0 2 0 2 ~ξ=R~(~x,p~,τ2,τ3),~π=P~(~x,p~,τ2,τ3)−~~k (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17) 1 ρ (~x,~p,τ −0) = f R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ (43b) gg 3 2 0 1 0 1 {~ξ=R~(R~(~x,p~,τ2,τ3),P~(~x,p~,τ2,τ3)+~~k,τ1,τ2), (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17) ~π=P~(R~(~x,p~,τ2,τ3),P~(~x,p~,τ2,τ3)+~~k,τ1,τ2)−~~k} i ρ (~x,~p,τ −0) = exp i 2~kR~(~x,~p,τ ,τ )−~k·~ξ−2δ(2)τ +δ(1)τ −2φ +φ 0eg 3 2 2 3 12 2 12 1 2 1 n n h io ×f R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ , (43c) 0 1 0 1 ~ξ=R~(x~,p~,τ1,τ3),~π=P~(~x,p~,τ1,τ3)−~~k/2 ~2(cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)o ρ (~x,~p,τ −0) = − exp i 2~kR~(~x,~p,τ ,τ )−~k·~ξ−2δ(2)τ +δ(1)τ −2φ +φ Qeg 3 48 2 3 12 2 12 1 2 1 n n h io ×f R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ 0 1 0 1 ~ξ=R~(x~,p~,τ1,τ3),~π=P~(~x,p~,τ1,τ3)−~~k/2 (cid:16)τ2 (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)o × dt ~k ~k ~k χ′ ~ξ,t ∂ R~ ~ξ,~π,τ ,t ∂ R~ ~ξ,~π,τ ,t u v w ikl ~πi u 1 ~πk v 1 Zτ1 h (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) ×∂ R~ ~ξ,~π,τ ,t . (43d) ~πl w 1 (cid:16) (cid:17)i~~πξ =( RP~~ )(~x,p~,t,τ3) Aggregatingdifferentpartsofthe nondiagonaldensitymatrixelements (43c,43d, 42)oneconcludesthatinthe linear in Q−term approximationthis term acts only on the atomic coherence phase: ′ ρ (~x,~p,τ −0) ≈ ρ (~x,p~,τ −0)+ρ (~x,p~,τ −0)+ρ (~x,p~,τ −0) eg 3 0eg 3 Qeg 3 Qeg 3 i = exp i 2~kR~(~x,p~,τ ,τ )−~k·~ξ−φ˜ (~x,p~)−2δ(2)τ +δ(1)τ −2φ +φ 2 2 3 Q 12 2 12 1 2 1 n n h io ×f R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ , (44a) 0 1 0 1 ~ξ=R~(~x,p~,τ1,τ3),~π=P~(x~,p~,τ1,τ3)−~~k/2 ~2(cid:16) (cid:16) τ2(cid:17) (cid:16) (cid:17)(cid:17)o φ˜ (~x,p~) = − ~k ~k ~k dtχ′ ~ξ,t ∂ R~ ~ξ,~π,τ ,t ∂ R~ ~ξ,~π,τ ,t ∂ R~ ~ξ,~π,τ ,t Q 24 u v w ikl ~πi u 1 ~πk v 1 ~πl w 1 (cid:26)Zτ1 (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) τ3 + dtχ′ ~ξ,t ∂ R~ ~ξ,~π,τ ,t −2R~ ~ξ,~π,τ ,t ikl ~πi u 1 u 2 Zτ2 (cid:16) (cid:17)h (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)i × ∂ R~ ~ξ,~π,τ ,t −2R~ ~ξ,~π,τ ,t ~πk v 1 v 2 h (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)i × ∂ R~ ~ξ,~π,τ ,t −2R~ ~ξ,~π,τ ,t . (44b) ~πl w 1 w 2 h (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)io~~πξ =( RP~~ )(~x,p~,t,τ3) 8 π π For the −π− AI, after the 3rd pulse, one should calculate only the atomic distribution in the excited sublevel. 2 2 One finds from the Eqs. (21a, 43a, 43b, 44) 1 ρ (~x,p~,τ +0) = f R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ ee 3 4 0 2 0 2 ~ξ=R~(~x,p~,τ2,τ3),~π=P~(~x,p~,τ2,τ3)−~~k (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17) 1 + f R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ 0 1 0 1 4 (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)~ξ = R~(R~(~x,p~−~~k,τ2,τ3),P~(~x,p~−~~k,τ2,τ3)+~~k,τ1,τ2) ~π P~(R~(~x,p~−~~k,τ2,τ3),P~(~x,p~−~~k,τ2,τ3)+~~k,τ1,τ2)−~~k 1 ~~k ~~k − cos ~k~x−2~kR~ ~x,p~− ,τ ,τ +~k·~ξ+φ˜ ~x,p~− 2( " 2 2 3! Q 2 ! −δ(3)τ +2δ(2)τ −δ(1)τ −φ +2φ −φ 12 3 12 2 12 1 3 2 1 i ×f R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ . (45) 0 1 0 1 ~ξ=R~(x~,p~−~~k/2,τ1,τ3),~π=P~(~x,p~−~~k/2,τ1,τ3)−~~k/2 (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)o This density matrix should be used to calculate any response associated with atoms on the excited state. We are using it to get the probability of atom cloud excitation defined as w = d~xdp~ρ (~x,p~,τ +0). (46) ee 3 Z First two terms in Eq. (45) are responsible for background. Since phase space stays invariant under the atom free 1 motion and recoil during interactions with Raman pulses, the backgroundequals to and 2 1 w = (1−w˜), (47) 2 where interferometric term is given by ~~k ~~k w˜ = d~xdp~ cos ~k~x−2~kR~ ~x,p~− ,τ ,τ +~k·~ξ+φ˜ ~x,p~− −δ(3)τ +2δ(2)τ −δ(1)τ −φ +2φ −φ ( " 2 2 3! Q 2 ! 12 3 12 2 12 1 3 2 1# Z ×f R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ . (48) 0 1 0 1 ~ξ=R~(~x,p~−~~k/2,τ1,τ3),~π=P~(~x,p~−~~k/2,τ1,τ3)−~~k/2 (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)o Selecting as integration variables atomic initial position and momentum at the moment of atom launching t , 0 {~x′,~p′}= R~ ~ξ,~π,t ,τ ,P~ ~ξ,~π,t ,τ (49) 0 1 0 1 n (cid:16) (cid:17) (cid:16) (cid:17)o one obtains ~ξ,~π = R~(~x′,~p′,τ ,t ),P~(~x′,p~′,τ ,t ) , (50a) 1 0 1 0 n{~x,~po} = nR~ R~(~x′,~p′,τ ,t ),P~ (~x′,~p′,τ ,ot )+~~k/2,τ ,τ , 1 0 1 0 3 1 nP~ (cid:16)R~(~x′,~p′,τ ,t ),P~(~x′,p~′,τ ,t )+~~k/2,τ ,τ (cid:17)+~~k/2 , (50b) 1 0 1 0 3 1 |∂{~x,~p}/∂{~x′,p~′}| = 1,(cid:16) (cid:17) o (50c) ~~k R~ ~x,~p− ,τ ,τ = R~ R~(~x′,~p′,τ ,t ),P~(~x′,p~′,τ ,t )+~~k/2,τ ,τ . (50d) 2 3 1 0 1 0 2 1 2 ! (cid:16) (cid:17) ′ ′ After that, replacing {~x,~p}→{~x,p~}, one obtains w˜ = d~xdp~cos φ(~x,p~)−δ(3)τ +2δ(2)τ −δ(1)τ −φ +2φ −φ f(~x,~p), (51) 12 3 12 2 12 1 3 2 1 Z h i 9 where the phase of the AI is given by φ(~x,p~) = φ (~x,p~)+φ (~x,p~), (52a) r Q φ (~x,p~) = ~k· R~ ~ξ,~π,τ ,τ −2R~ ~ξ,~π,τ ,τ +~ξ , (52b) r 3 1 2 1 {~ξ=R~(x~,p~,τ1,t0),~π=P~(~x,p~,τ1,t0)+~~k/2} h (cid:16) (cid:17) (cid:16) (cid:17) i φ (~x,p~) = φ˜ R~ ~ξ,~π,τ ,τ ,P~ ~ξ,~π,τ ,τ , (52c) Q Q 3 1 3 1 {~ξ=R~(~x,p~,τ1,t0),~π=P~(~x,p~,τ1,t0)+~~k/2} h (cid:16) (cid:17) (cid:16) (cid:17)i where φ˜ is given by Eq. (44b). Q Part φ includes ”classical” part of the phase (erasing in the limit ~ → 0) and recoil effect during interacion with r Raman pulses. For the rotating sphericalEarththis this part had been calculatedin [1]. We calculate here additions to φ caused by proof mass field. r Part φ is originated from quantum correction Q to the density matrix in Wigner representationequation in time Q between pulses. If atom trajectory is smaler than the size of the gravity field (5), one can expand gravity field in the vicinity of atoms launching point. Holding only gravity-gradient terms in that expansion one gets φ = 0, because Q tensor (7b) dissapears. For this reason we did not consider Q−term in [1]. Part φ one has to know for precize Q measurements of the Newtonian gravitational constant [2–4]. Keeping in mind this application we will calculate φ Q below. A. Part φ r Propagationfunctions R~(~x,~p,t,t′),P~(~x,~p,t,t′) , i.e. atomic position andmomentum attime t subject to initial ′ value {~x,p~} at moment tn, evolve as o →˙ P~(~x,~p,t,t′) ′ R(~x,p~,t,t) = , (53a) M a →˙ P (~x,p~,t,t′) = M ~g+δ~g R~(~x,p~,t,t′),t , (53b) a n h io where ~g is Earth gravity field, δ~g(~x,t) is proof mass gravity field. We neglect in Eq. (53) the gravity-gradient, centrifugal and Coriolis forces caused by the rotating Earth. When δ~g(~x,t) is a perturbation, approximate solutions of the Eq. (11) are [5] R~(~x,p~,t,t′) ≈ R~(0)(~x,p~,t,t′)+δR~(~x,~p,t,t′), (54a) P~ (~x,p~,t,t′) ≈ P~(0)(~x,p~,t,t′)+δP~(~x,p~,t,t′), (54b) p~ (t−t′)2 R~(0)(~x,p~,t,t′) = ~x+ (t−t′)+~g , (54c) M 2 a P~(0)(~x,p~,t,t′) = ~p+M ~g(t−t′); (54d) a t δR~(~x,p~,t,t′) = dt′′(t−t′′)δ~g R~(0)(~x,~p,t′′,t′),t′′ (54e) Zt′ h i t δP~ (~x,p~,t,t′) = M dt′′δ~g R~(0)(~x,p~,t′′,t′),t′′ ;. (54f) a Zt′ h i Functions R~(0),P~(0),δR~,δP~ obey multiplication laws n o R~(0) R~(0)(~x,p~,t′,t′′),P~(0)(~x,~p,t′,t′′),t,t′ = R~(0) (~x,~p,t,t′′). (55a) P~(0) P~(0) (cid:26) (cid:27)(cid:16) (cid:17) (cid:26) (cid:27) δR~ δR~(~x,p~,t′,t′′),δP~(~x,~p,t′,t′′),t,t′ = δR~ (~x,~p,t,t′′). (55b) δP~ δP~ (cid:26) (cid:27)(cid:16) (cid:17) (cid:26) (cid:27) ~~k To get phase (52b) one needs aproximate expression for propagator R~ R~(~x,~p,τ ,t ),P~ (~x,~p,τ ,t )+ ,τ ,τ . 1 0 1 0 s 1 2 ! Using Eqs. (54, 55) one consequently finds 10 ~~k R~(0)(~x,~p,τ1,t0)+δR~(~x,p~,τ1,t0), R~ R~(~x,p~,τ1,t0),P~(~x,p~,τ1,t0)+ 2 ,τs,τ1!≈R~(0) P~(0)(~x,p~,τ1,t0)+δP~(~x,p~,τ1,t0)+ ~~k,τs,τ1 2 ~~k +δR~ R~(0)(~x,p~,τ ,t ),P~(0)(~x,p~,τ ,t )+ ,τ ,τ 1 0 1 0 s 1 2 ! =R~(0)(~x,~p,τ ,t )+δR~(~x,p~,τ ,t )+ 1 0 1 0 1 τ1 ~~k 1 P~(0)(~x,p~,τ ,t )+M dt′δ~g R~(0)(~x,~p,t′,t ),t′ + (τ −τ )+ ~g(τ −τ )2 1 0 a 0 s 1 s 1 M 2 2 a " Zt0 h i # τs ~~k + dt′(τ −t′)δ~g R~(0) R~(0)(~x,p~,τ ,t ),P~(0)(~x,p~,τ ,t )+ ,t′,τ ,t′ , (56) s 1 0 1 0 1 2 Zτ1 " ! # Since from Eqs. (55, 54c), R~(0)(~x,p~,τ ,t ) = R~(0) R~(0)(~x,p~,τ ,t ),P~(0)(~x,p~,τ ,t ),τ ,τ s 0 1 0 1 0 s 1 (cid:16) 1 (cid:17) 1 = R~(0)(~x,p~,τ ,t )+ P~(0)(~x,~p,τ ,t )(τ −τ )+ ~g(τ −τ )2 (57) 1 0 1 0 s 1 s 1 M 2 a one rewrites ~~k ~~k R~ R~(~x,p~,τ ,t ),P~(~x,p~,τ ,t )+ ,τ ,τ ≈R~(0)(~x,~p,τ ,t )+ (τ −τ ) 1 0 1 0 s 1 s 0 s 1 2 2M ! a τ1 τ1 +(τ −τ ) dt′′δ~g R~(0)(~x,p~,t′,t ),t′ + dt′′(τ −t′)δ~g R~(0)(~x,p~,t′,t ),t′ s 1 0 1 0 Zt0 h i Zt0 h i τs ~~k + dt′(τ −t′)δ~g R~(0) R~(0)(~x,p~,τ ,t ),P~(0)(~x,p~,τ ,t )+ ,t′,τ ,t′ . (58) s 1 0 1 0 1 2 Zτ1 " ! # One uses now that ~~k ~~k R~(0) R~(0)(~x,p~,τ ,t ),P~(0)(~x,p~,τ ,t )+ ,t′,τ = (t′−τ ) 1 0 1 0 1 1 2 2M ! a +R~(0) R~(0)(~x,~p,τ ,t ),P~(0)(~x,p~,τ ,t ),t′,τ 1 0 1 0 1 (cid:16) ~~k (cid:17) =R~(0)(~x,p~,t′,t )+ (t′−τ ), (59) 0 1 2M a and therefore ~~k ~~k R~ R~(~x,p~,τ ,t ),P~(~x,p~,τ ,t )+ ,τ ,τ ≈R~(0)(~x,~p,τ ,t )+ (τ −τ ) 1 0 1 0 s 1 s 0 s 1 2 2M ! a τ1 τ1 +(τ −τ ) dt′′δ~g R~(0)(~x,p~,t′,t ),t′ + dt′′(τ −t′)δ~g R~(0)(~x,p~,t′,t ),t′ s 1 0 1 0 Zt0 h i Zt0 h i τs + dt′(τ −t′)δ~g R~(0)(~x,~p,t′,t ),t′ s 0 Zτ1 h i τs ~~k + dt′(τ −t′) δ~g R~(0)(~x,p~,t′,t )+ (t′−τ ),t′ −δ~g R~(0)(~x,p~,t′,t ),t′ . (60) s 0 1 0 2M Zτ1 ( " a # h i)