ebook img

Atmospheric Radar: Application and Science of MST Radars in the Earth's Mesosphere, Stratosphere, Troposphere, and Weakly Ionized Regions PDF

853 Pages·2016·21.423 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Atmospheric Radar: Application and Science of MST Radars in the Earth's Mesosphere, Stratosphere, Troposphere, and Weakly Ionized Regions

Cambridge University Press 978-1-107-14746-1 — Atmospheric Radar Wayne K. Hocking , Jürgen Röttger , Robert D. Palmer , Toru Sato , Phillip B. Chilson Frontmatter More Information AtmosphericRadar Richly illustrated, and including both an extensive bibliography and index, this indispensable guidebringstogetherthetheory,design,andapplicationofatmosphericradar.Itexplainsthebasic thermodynamicsanddynamicsofthetroposphere,stratosphere,andmesosphere,anddiscusses thephysicalandengineeringprinciplesbehindoneofthekeytoolsusedtostudytheseregions – MST radars. Key topics covered include antennas, signal propagation, and signal processing techniques.Awiderangeofpracticalapplicationsisdiscussed,includingtheuseofatmospheric radartostudywindprofiles,tropospherictemperature,andgravitywaves.Adetailedoverviewof radardesignsprovidesawealthofknowledgeandtools,providingreaderswithastrongbasisfor buildingtheirowninstruments.Thisisanessentialresourceforgraduatestudentsandresearchers workingintheareasofradarengineering,remotesensing,meteorology,andatmosphericphysics, aswellasforpractitionersintheradarindustry. WayneK.Hocking is a Professor of Physics at the University of Western Ontario and a Fellow oftheRoyalSocietyofCanadaandoftheAustralianInstituteofPhysics.Hehasbuiltover40 radarsworld-wideandeditedmultiplespecialissuesofjournals.HeistherecipientoftheMedal for Outstanding Achievement in Industrial/Applied Physics from the Canadian Association of PhysicistsandthePawseyMedalfromtheAustralianAcademyofScience.Hehasalsoreceived acitationfromNASAforhisworkontheSpaceShuttlere-entryenvironment. JürgenRöttgerisaFellowoftheRoyalAstronomicalSocietyandholdstheMinervaMedalofthe MaxPlanckSociety.HehasalsoheldthepositionofChairProfessoratNationalCentralUniver- sity.Inthe1970shewasaleadingdeveloperoftheSOUSYradar.In1985heheadedatmospheric sciencesattheAreciboObservatory,andfrom1986–1997wastheDirectorofEISCAT,wherehe wasawardedtheEISCATBeynonMedalforhisroleinthedevelopmentoftheEISCATSvalbard radar.HealsoledthedesignoftheChung-LiMSTradarinTaiwan. Robert D. Palmer is the Executive Director of the Advanced Radar Research Center and the Craighead Chair in the School of Meteorology at the University of Oklahoma. He also serves astheUniversity’sAssociateVicePresidentforResearch.Hehaspublishedwidelyinthearea of radar sensing of the atmosphere, with an emphasis on imaging problems, waveform design, clutter mitigation, and the application of array/signal processing techniques to observations of boththeclear-airenvironmentandsevereweather.ProfessorPalmerisaFellowoftheAmerican MeteorologicalSociety. ToruSatoisaProfessorintheGraduateSchoolofInformaticsatKyotoUniversity.Hehasbeen engaged in data analysis of Jicamarca and Arecibo radars, and has contributed to the design andoperationofJapaneseMST/ISradars,notablytheMUradar,EquatorialAtmosphereradar, and PANSY radar. He has published more than 160 journal papers, and in 2015 received the Commendation for Contributors to Promotion of an Oceanic State from the Prime Minister of Japan. Phillip B. Chilson is a Professor in the School of Meteorology at the University of Oklahoma and a member of the University’s Advanced Radar Research Center. He has been involved in atmosphericradarresearchanddevelopmentforover25yearsandhashelpedtodevelopmany advanced radar signal processing tools. Professor Chilson has previously held positions at the MaxPlanckInstituteforAstronomy,theSwedishInstituteofSpacePhysics,andtheUniversity ofColoradoinBoulder. www.cambridge.org Cambridge University Press 978-1-107-14746-1 — Atmospheric Radar Wayne K. Hocking , Jürgen Röttger , Robert D. Palmer , Toru Sato , Phillip B. Chilson Frontmatter More Information Atmospheric Radar Application and Science of MST Radars in the Earth’s Mesosphere, Stratosphere, Troposphere, and Weakly Ionized Regions WAYNE K. HOCKING UniversityofWesternOntario JÜRGEN RÖTTGER MaxPlanckInstituteforSolarSystemResearch ROBERT D. PALMER UniversityofOklahoma TORU SATO KyotoUniversity PHILLIP B. CHILSON UniversityofOklahoma www.cambridge.org Cambridge University Press 978-1-107-14746-1 — Atmospheric Radar Wayne K. Hocking , Jürgen Röttger , Robert D. Palmer , Toru Sato , Phillip B. Chilson Frontmatter More Information UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 4843/24,2ndFloor,AnsariRoad,Daryaganj,Delhi–110002,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107147461 (cid:2)c CambridgeUniversityPress2016 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2016 PrintedintheUnitedKingdombyBellandBainLtd AcatalogrecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloginginPublicationdata Names:Hocking,W.K.,author. | Röttger,J.(Jürgen),author. | Palmer, RobertD.,1962-author. | Sato,Toru(Professor),author. | Chilson, PhillipB.,1963-author. Title:Atmosphericradar:applicationandscienceofMST radarsintheEarth’smesosphere,stratosphere,troposphere,andweakly ionizedregions/WayneK.Hocking(UniversityofWesternOntario), JürgenRöttger(MaxPlanckInstituteforSolarSystemResearch), RobertD.Palmer(UniversityofOklahoma),ToruSato(KyotoUniversity), PhillipB.Chilson(UniversityofOklahoma). Description:Cambridge,UnitedKingdom;NewYork,NY:CambridgeUniversity Press,2016. | Includesbibliographicalreferencesandindex. Identifiers:LCCN2016013389 | ISBN9781107147461 | ISBN1107147468 Subjects:LCSH:Atmosphere–Measurement. | Radarmeteorology. | Atmospheric physics. Classification:LCCQC973.5.H632016 | DDC621.3848–dc23 LCrecordavailableathttps://lccn.loc.gov/2016013389 ISBN978-1-107-14746-1Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. www.cambridge.org Cambridge University Press 978-1-107-14746-1 — Atmospheric Radar Wayne K. Hocking , Jürgen Röttger , Robert D. Palmer , Toru Sato , Phillip B. Chilson Frontmatter More Information Contents Preface pagexiii Acknowledgments xvi 1 Anoverviewoftheatmosphere 1 1.1 Introduction 1 1.2 Theoriginsofradar 2 1.3 Theatmosphere–anoverview 6 1.3.1 TheEarth’sneutralatmosphereandionosphere 6 1.3.2 Causesofthetemperatureanddensitystructures 13 1.3.3 Radiativetransferinthetroposphereandgreenhousewarming 16 1.3.4 Variabilityandatmosphericcirculation 20 1.3.5 Atmospheric circulation in the upper stratosphere and mesosphere 29 1.3.6 Synopticandmesoscaleflows 34 1.4 Someimportantthermodynamicsandstatics 35 1.4.1 Introduction 35 1.4.2 Pressureasafunctionofheight 36 1.4.3 Adiabaticexpansion 37 1.4.4 Adiabaticlapserate 38 1.4.5 Brunt–Väisäläfrequency 40 1.4.6 Potentialtemperature 44 1.4.7 AtmosphericstabilityandtheRichardsonnumber 45 2 Thehistoryofradarinatmosphericinvestigations 47 2.1 Introduction 47 2.2 Meteorologicalradar 48 2.3 Dopplermethodsinradarmeteorology 50 2.4 IonospherichistorypertainingtoMSTradar 55 2.5 D-regionstudieswithMFandHFradar 58 2.6 Meteorphysicswithradar 70 2.7 Incoherentscatterradars 73 2.7.1 Coherentechoesseenwithincoherentscatterradars 75 www.cambridge.org Cambridge University Press 978-1-107-14746-1 — Atmospheric Radar Wayne K. Hocking , Jürgen Röttger , Robert D. Palmer , Toru Sato , Phillip B. Chilson Frontmatter More Information vi Contents 2.8 MSTradartechniquesatVHFandsomeatmosphericsciencehighlights 76 2.9 Newer-generationradars 86 2.10 Scatteringandpartialreflection 88 2.10.1 SpecularandFresnelreflectors 88 2.10.2 Scatteringbyturbulence 93 2.10.3 Amplitudedistributions 94 2.11 VHF-MSTradarmethodsformeasuringthehorizontalwindvelocity 95 2.12 Measuringmomentumfluxandturbulence 98 2.13 RadarmeteorologyandnetworksusingMSTradars 99 2.14 Strangescatterersinthepolarupperatmosphere 100 2.15 Imaging,improvingspatialresolution,andapplicationofinterferometry 102 2.15.1 Introduction 102 2.15.2 Resolutionimprovement 103 2.15.3 Interferometry 103 2.15.4 Imaging 105 2.15.5 Frequencydomaininterferometry 106 2.15.6 Imaging,SDI,FDI,andsimilartechniques 106 2.15.7 TherelationbetweenIDIandFCA-typemethods,andthe validityofpointscatterers 113 2.16 TemperaturemeasurementsandRASS 115 2.17 PrecipitationmeasurementswithMSTradar 117 2.18 Additionalapplications 118 3 Refractiveindexoftheatmosphereandionosphere 120 3.1 Introduction 120 3.2 Waverepresentation 121 3.3 Electromagneticwavesinadielectric 123 3.3.1 Useofcomplexnumbers 125 3.4 Refractiveindexofanelectrongas 126 3.4.1 RelevanceofrefractiveindexinMSTstudies 129 3.4.2 Howcanthephasespeedbegreaterthanc? 130 3.5 Radiowaverefraction 138 3.5.1 Refractionintheionosphere 139 3.6 Verticalincidence 141 3.6.1 Evanescence 142 3.6.2 Inclusionofcollisionratesintheexpressionforrefractiveindex 143 3.6.3 Inclusionofthemagneticfield 146 3.6.4 Inclusionofboththemagneticfieldandcollisionaleffects 156 3.6.5 Moresophisticatedequationsforrefractiveindex 157 3.7 Electronbackscattercross-section 159 3.7.1 Cross-sections 159 3.7.2 Scatteringfromafreeelectrongas 159 3.8 Multipleelectrons 165 3.8.1 Aregulargrid 165 www.cambridge.org Cambridge University Press 978-1-107-14746-1 — Atmospheric Radar Wayne K. Hocking , Jürgen Röttger , Robert D. Palmer , Toru Sato , Phillip B. Chilson Frontmatter More Information Contents vii 3.8.2 Braggscales 166 3.8.3 Randompositions 168 3.8.4 Randomelectronposition 169 3.8.5 Rayleighdistributions 169 3.9 Backscattercross-sectionsandreflectivitiesforaradar 171 3.9.1 Introductionofthespectrum 171 3.9.2 Thespectrumofrefractiveindexvariations 176 3.10 Impactofelectronmotionsandplasmawavesinradiowavescattering 199 3.10.1 Furthertheorypertainingtoscattering 205 3.11 Refractiveindexandscatteringintheneutralatmosphere 205 3.11.1 Expressionsfortherefractiveindexintheneutralair 206 3.12 Diffraction,antennafieldpatterns,andgain 216 4 Fundamentalconceptsofradarremotesensing 217 4.1 Introduction 217 4.2 TheradartargetsinMSTstudies 217 4.3 Asimpleradar 219 4.4 Radarpolardiagrams 222 4.5 Monostaticcontinuous-wave“radar” 224 4.6 Pulsedradar 230 4.6.1 Backscatterasaconvolution 234 4.6.2 Superheterodynesystems 236 4.6.3 Transmit-receiveswitches 239 4.6.4 Multi-staticcontinuous-waveradar 240 4.7 Combiningthepulseequationsandthepolardiagrams 241 4.8 Optimizingthesignal 243 4.8.1 Matchedfilter 243 4.8.2 Filtersandresolution 245 4.8.3 Pulsecompression 247 4.9 Dopplerradialvelocityandcoherentintegration 253 4.9.1 Radialvelocity 253 4.9.2 Coherentintegration 257 4.9.3 Analternativetocoherentintegration 259 4.10 Rangeandvelocityambiguities:ambiguityfunction 264 4.10.1 Deliberaterangealiasing 266 4.11 Radarcalibration 267 5 Configurationofatmosphericradars–antennas,beampatterns, electronics,andcalibration 268 5.1 Introduction 268 5.1.1 Monostaticsystems:pulsedandFM-CW 268 5.1.2 Multistaticsystems 270 5.2 Radarantennas 274 5.2.1 Basictheory 274 www.cambridge.org Cambridge University Press 978-1-107-14746-1 — Atmospheric Radar Wayne K. Hocking , Jürgen Röttger , Robert D. Palmer , Toru Sato , Phillip B. Chilson Frontmatter More Information viii Contents 5.2.2 Relationbetweengain,effectivearea,andbeam-width 276 5.2.3 Radiationpatternsforsimpleantennas 285 5.2.4 Reflectorantenna 286 5.2.5 Arrayantenna 288 5.2.6 Elementantennaforarray 294 5.2.7 Antennaimpedanceandmatching 295 5.2.8 Effectofrandomerrorsinanarrayantenna 298 5.2.9 Digitalbeamforming(DBF)antennas 299 5.2.10 Thefeedsystem 300 5.2.11 Beamsteeringandphaseshifting 301 5.2.12 Adaptiveclutterrejection 301 5.3 Transmitterandreceiversystems 305 5.3.1 Systemconfiguration 305 5.3.2 Transmitter 306 5.3.3 Thereceiver 308 5.3.4 TRswitch 309 5.4 Radarsignalacquisitionsystem 312 5.4.1 Digitalreceiversystems 313 5.4.2 Fullydigitalsystems 314 5.4.3 Pulse-coding,coherentintegration,andsoftwareissues 314 5.5 Relatingbackscattercross-sectionsandreflectivitiestoreceivedpower 314 5.5.1 Anexample:naivedeterminationofelectrondensity 315 5.5.2 Determinationofturbulenceparameters 318 5.6 Calibration 320 5.6.1 Rangecalibration 321 5.6.2 Calibrationofthepolardiagram 322 5.6.3 Powercalibration 324 6 Examplesofspecificatmosphericradarsystems 337 6.1 Introduction 337 6.2 TheSOUSYradar 338 6.2.1 Technicaldetails 341 6.2.2 SummaryoftheSOUSYradar 350 6.3 TheMUradar 350 6.3.1 Introduction 350 6.3.2 Computers 352 6.3.3 Theantennaarray 353 6.3.4 Thetransmitter-receiversystem 356 6.3.5 Antennafeedmechanism 358 6.3.6 SummaryoftheMUradar 359 6.4 TheCLOVARradar 359 6.4.1 Introduction 359 6.4.2 Theantennaarray 360 6.4.3 Thecontrollercomputer 366 www.cambridge.org Cambridge University Press 978-1-107-14746-1 — Atmospheric Radar Wayne K. Hocking , Jürgen Röttger , Robert D. Palmer , Toru Sato , Phillip B. Chilson Frontmatter More Information Contents ix 6.4.4 Beam-pointing 367 6.4.5 Thetransmitter,transmit-receiveswitch,andreceiver 370 6.4.6 Systemtestsandusefulness 370 6.5 Morerecentradars 372 6.5.1 ThePANSYradar 372 6.5.2 TheMAARSYradar 379 7 Derivationofatmosphericparameters 381 7.1 Introduction 381 7.2 Windvectordetermination 382 7.2.1 Dopplermeasurements 382 7.2.2 Spacedantennamethods:FCAandinterferometertechniques 392 7.2.3 Briefcommentsonthevariouswind-measurementtechniques 392 7.3 Spectralwidthestimates 393 7.3.1 Theoreticaldeterminationsofthebeam-broadenedspectral width 398 7.3.2 “Negative”energydissipationrates 401 7.3.3 Extractionoftheturbulentkineticenergydissipationrate 404 7.4 Powermeasurements 415 7.4.1 Modelingthereflectionandscatteringprocesses 416 7.4.2 Convertingreceivedpowerstobackscattercross-sections 419 7.4.3 Determinationofturbulenceintensitiesfrommeasurements ofreceivedpower 422 7.5 Aspectsensitivityofthescatterers 424 7.5.1 Experimentaltechniquestodeterminethenatureofthescatterers427 7.6 Someinterestingtroposphericparameters 436 7.6.1 VHFradaranisotropy,convection,andprecipitation 437 7.6.2 Tropopauseheight 437 7.7 Lesseasilydeterminedtargetparameters 438 8 DigitalprocessingofDopplerradarsignals 441 8.1 Analog-to-digitalconversion 443 8.2 Time-domainprocessing 445 8.3 BriefreviewofFourieranalysis 447 8.3.1 Continuous-timeFouriertransform 448 8.3.2 Discrete-timeFouriertransform 452 8.3.3 DiscreteFouriertransform(fastFouriertransform) 455 8.4 Digitalfilteringconcepts 459 8.4.1 z-transformandfrequencyresponse 459 8.4.2 Digitalfilterdesign 461 8.5 Reviewofrandomprocesses 465 8.6 Estimationofthepowerspectraldensity 469 8.6.1 Periodogramandcorrelogram 470 8.6.2 Blackman–Tukeymethod 476 www.cambridge.org Cambridge University Press 978-1-107-14746-1 — Atmospheric Radar Wayne K. Hocking , Jürgen Röttger , Robert D. Palmer , Toru Sato , Phillip B. Chilson Frontmatter More Information x Contents 8.6.3 Averagedperiodogrammethod–Bartlettmethod 478 8.6.4 Spectralconvolutionsandrunningmeans 481 8.6.5 Caponmethod 482 8.7 TheatmosphericDopplerspectrum 491 8.8 Estimationofspectralmoments 495 8.8.1 Timedomainestimators(autocovariancemethod) 497 8.8.2 Frequencydomainestimators 499 9 Multiple-receiverandmultiple-frequencyradartechniques 504 9.1 Introduction 504 9.2 Mathematicalframeworktodescribetheradarsignal 509 9.2.1 Scatterfromasinglescatterer 509 9.2.2 Scatterfromdistributedormultiplescatterers 512 9.2.3 Covariance/correlationfunctionsandthebrightnessfunction 513 9.3 Spacedantennamethods 519 9.3.1 Fundamentalconcepts 519 9.3.2 Fullcorrelationanalysis(FCA) 523 9.4 Interferometry 530 9.4.1 Radarinterferometry(RI) 532 9.4.2 Frequencydomaininterferometry(FDI) 535 9.5 Imaging 537 9.5.1 Multiple-receiverimaging 538 9.5.2 Estimationoftheweightingvector 541 9.5.3 Multiple-frequencyimaging 543 10 Extendedandmiscellaneousapplicationsofatmosphericradars 549 10.1 Introduction 549 10.2 PMSEandPMWE 550 10.2.1 Geographicaldistribution 552 10.2.2 ReasonsforPMSE 554 10.2.3 Othermesosphericechoes 557 10.3 Meteorstudies 560 10.3.1 Introductionandradardesign 560 10.3.2 Windsandtemperatures 561 10.3.3 Momentumfluxes 563 10.3.4 Additionalmiscellaneousmeteor-relatedstudies 565 10.4 TropospherictemperaturemeasurementsandRASS 566 10.5 Waterinthetroposphereandstratosphere 567 10.5.1 PrecipitationmeasurementswithSTradar 567 10.5.2 MeasuringhumiditywithSTradar 567 10.6 Otherspecializedmeteorologicaltopics 569 10.7 Lightningdetectionwithwindprofilerradars 570 10.7.1 Themechanicsoflightning 570 10.7.2 VHFradarandradioobservationsoflightning 572 www.cambridge.org Cambridge University Press 978-1-107-14746-1 — Atmospheric Radar Wayne K. Hocking , Jürgen Röttger , Robert D. Palmer , Toru Sato , Phillip B. Chilson Frontmatter More Information Contents xi 10.7.3 Amplitudeandphasecharacteristicsofradarreturnsfrom lightning 576 10.7.4 VHFradarinterferometerobservationsoflightning 578 10.8 Studiesabovethemesosphere–plasmaandionosphericprocesses 581 10.8.1 150kmechoes 583 10.8.2 Otherionosphericresearch 588 10.9 D-regionscatterandthedifferentialabsorptionexperiment 589 10.9.1 DAE(thedifferentialabsorptionexperiment) 589 10.9.2 Passiveradar 594 10.10 Astronomicalapplications 594 10.11 Finalcomments 595 11 Gravitywavesandturbulence 596 11.1 Introduction 596 11.2 Gravitywaves 598 11.2.1 Theimportanceofgravitywaves 598 11.2.2 Asimpledescriptionofthegenerationofgravitywaves 599 11.2.3 Thefluiddynamicalequationsofmotion 606 11.2.4 Theapproximationsoftheequationsofmotionforgravity wavestudies 607 11.2.5 Saturationtheoryandthe“universalspectrum” 611 11.2.6 Measurementtechniquesforgravitywaves 617 11.2.7 Overviewofsomeimportantgravitywaveparameters 619 11.2.8 Seasonalandlatitudinalvariations 622 11.2.9 Refraction,turninglevels,andwaveducting 624 11.2.10 Sourcesofgravitywaves 627 11.2.11 Directionsofpropagation 629 11.2.12 Breakdown, convective adjustment (shedding), and catastrophiccollapse 630 11.2.13 Momentumfluxes,dragforces,andenergyfluxes 632 11.2.14 Meanflowinteractions 636 11.2.15 Stokes’driftandwave-induceddiffusion 636 11.2.16 Localgravitywaveeffects 637 11.2.17 Gravitywaveparameterizationformeteorologicalmodels 638 11.3 Turbulenceintheupperatmosphere 639 11.3.1 Turbulencestructureabovetheboundarylayer 639 11.3.2 Thekeyscalesofturbulence 649 11.3.3 Theturbopause 652 11.3.4 Turbulencestructurefunctionsandspectra 653 11.3.5 Measurementtechniquesandresultsforturbulencestudies 659 11.3.6 Small-scalestructuresandanisotropicturbulence 668 11.3.7 Computer modeling of gravity wave breakdown and turbulenceproduction 670 www.cambridge.org

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.