Atmos.Chem.Phys.,14,13681–13704,2014 www.atmos-chem-phys.net/14/13681/2014/ doi:10.5194/acp-14-13681-2014 ©Author(s)2014.CCAttribution3.0License. Atmospheric oxidation of 1,3-butadiene: characterization of gas and aerosol reaction products and implications for PM 2.5 M.Jaoui1,M.Lewandowski2,K.Docherty1,J.H.Offenberg2,andT.E.Kleindienst2 1AlionScienceandTechnology,P.O.Box12313,ResearchTrianglePark,NC27709,USA 2USEnvironmentalProtectionAgency,OfficeofResearchandDevelopment, NationalExposureResearchLaboratory,ResearchTrianglePark,NC27711,USA Correspondenceto:M.Jaoui([email protected]) Received:21April2014–PublishedinAtmos.Chem.Phys.Discuss.:2June2014 Revised:9September2014–Accepted:1October2014–Published:20December2014 Abstract. Secondary organic aerosol (SOA) was generated tween 22.5 and 140.2µgm−3 was 0.025±0.011, a value byirradiating1,3-butadiene(13BD)inthepresenceofH O consistentwiththeliterature(0.021–0.178).Whilethefocus 2 2 orNO .Experimentswereconductedinasmogchamberop- ofthisstudyhasbeenexaminationoftheparticle-phasemea- x erated in either flow or batch mode. A filter/denuder sam- surements,thegas-phasephotooxidationproductshavealso pling system was used for simultaneously collecting gas- beenexamined. and particle-phase products. The chemical composition of ThecontributionofSOAproductsfrom13BDoxidationto the gas phase and SOA was analyzed using derivative- ambientPM wasinvestigatedbyanalyzingaseriesofam- 2.5 based methods (BSTFA, BSTFA + PFBHA, or DNPH) bientPM samplescollectedinseverallocationsaroundthe 2.5 followed by gas chromatography–mass spectrometry (GC– UnitedStates.Inadditiontotheoccurrenceofseveralorganic MS) or high-performance liquid chromatography (HPLC) compoundsinfieldandlaboratorysamples,glycericacid,d- analysis of the derivative compounds. The analysis showed threitol,erythritol,erythrose,andthreonicacidwerefoundto the occurrence of more than 60 oxygenated organic com- originateonlyfromtheoxidationof13BDbasedonourpre- pounds in the gas and particle phases, of which 31 or- vious experiments involving chamber oxidation of a series ganicmonomersweretentativelyidentified.Themajoriden- ofhydrocarbons.Initialattemptshavebeenmadetoquantify tifiedproductsincludeglycericacid,d-threitol,erythritol,d- theconcentrationsofthesecompounds.Theaverageconcen- threonicacid,meso-threonicacid,erythrose,malicacid,tar- trationsofthesecompoundsinambientPM samplesfrom 2.5 taricacid,andcarbonylsincludingglycolaldehyde,glyoxal, theCaliforniaResearchattheNexusofAirQualityandCli- acrolein, malonaldehyde, glyceraldehyde, and peroxyacry- mateChange(CalNex)studyrangedfrom0toapproximately loylnitrate(APAN).Someoftheseweredetectedinambient 14.1ngm−3.Theoccurrenceofseveralothercompoundsin PM samples,andcouldpotentiallyserveasorganicmark- both laboratory and field samples suggests that SOA origi- 2.5 ers of 13BD. Furthermore, a series of oligoesters were de- natingfrom13BDoxidationcouldcontributetotheambient tectedandfoundtobeproducedthroughchemicalreactions aerosolmainlyinareaswithhigh13BDemissionrates. occurring in the aerosol phase between compounds bearing alcoholicgroupsandcompoundsbearingacidicgroups. SOA was analyzed for organic mass to organic carbon (OM/OC)ratio,effectiveenthalpyofvaporization((cid:49)Heff), 1 Introduction vap andaerosolyield.TheaverageOM/OCratioandSOAden- sity were 2.7±0.09 and 1.2±0.05, respectively. The aver- Atmospheric organic carbon (OC) from anthropogenic age(cid:49)Heff was−26.08±1.46kJmol−1,avaluelowerthan sources forms a large portion of urban ambient organic vap that of isoprene SOA. The average laboratory SOA yield aerosol.Duringthelastcentury,thesourceofanthropogenic measured in this study at aerosol mass concentrations be- hydrocarbons increased significantly due to growth in pop- ulation and energy demand. The sources of these hydrocar- PublishedbyCopernicusPublicationsonbehalfoftheEuropeanGeosciencesUnion. 13682 M.Jaouietal.:Atmosphericoxidationof1,3-butadiene bons are as varied as the species that make up the organic et al., 1990; Pankow et al., 2004; Penn and Snyder, 1996; aerosol, and their oxidation is known to lead to the for- Yeetal.,1998;Thornton-Manningetal.,1997;Sorsaetal., mation of organic aerosol. In the last two decades, consid- 1996; Hurst, 2007). The mixing ratio of 13BD at the low erable effort has been devoted to understanding secondary ppblevelwasmeasuredintheambientatmosphere(USEPA, organic aerosol (SOA) and ground-level ozone formation 2002;Dollardetal.,2001;Vimaletal.,2008;DuffyandNel- from biogenic and anthropogenic hydrocarbons (Kanaki- son, 1997), while higher concentrations up to 15ppb have dou et al., 2005; Hallquist et al., 2009). SOA often consti- beenobservedinareasclosetoplasticandrubberfacilities, tutes a significant fraction of particles less than 2.5µm in inside moving vehicles, and in road traffic tunnels. Due to diameter (PM ), and can have significant impacts on the therelativelyhighvolatilityof13BD,itsmainremovalfrom 2.5 physicalandchemicalcharacteristicsofambientaerosolaf- theatmosphereisthroughreactionswithOH,O ,NO ,and 3 3 fecting climate and air quality from global to regional and Cl to produce a number of potentially toxic products (e.g., local scales. Numerous studies have shown that several at- acrolein, formaldehyde), which are also considered air tox- mospheric processes, including visibility reduction (Sisler ics under the CAAA (Liu et al., 1999; Notario et al., 1997; andMalm,1994)andchangesindirectradiativeforcingthat KrampandPaulson,2000;Doyleetal.,2004;Angoveetal., might affect the global climate (Charlson et al., 1992), are 2006). affectedbyambientPM .ExposuretoPM hasbeenim- The gas-phase oxidation of 13BD has been investigated 2.5 2.5 plicated in increases in human mortality and morbidity lev- in a series of laboratory studies. Most work to date has els, and decreased PM levels have been shown to be asso- involved the use of flow tubes and smog chambers to ciated with increased life expectancy (Pope et al., 2009). study gas-phase kinetics of 13BD, but in only a few cases To date, the chemical composition of ambient aerosol par- have aerosol products been examined. Liu et al. (1999) ticles,inparticulartheorganicfractionoriginatingfroman- examined the gas-phase products from the reaction of thropogenicsources,hasnotbeenfullycharacterized.Asthe 13BD with OH radicals and ozone (O ). The major car- 3 understanding of the chemical composition and toxicology bonylproductsreportedwereformaldehyde,acrolein,glyco- associatedwiththeseparticlesdevelops,moreaccuratecom- laldehyde, glyceraldehyde, 3-hydroxy-propanaldehyde, hy- positionaldatamightberequired. droxyacetone,andmalonaldehyde.Additionalnon-carbonyl Inthepast,hydrocarbonspossessingfiveorfewercarbon products included furan, 1,3-butadiene monoxide, and 1,3- atomsweregenerallynotconsideredsignificantcontributors butadienediepoxide.BerndtandBöge(2007)reportedyields to SOA formation (Grosjean and Seinfeld, 1989). Recently, of formaldehyde (0.64±0.08), acrolein (0.98±0.12), 4- however,aseriesofbiogenicandanthropogenicconjugated hydroxy-2-butanal (0.23±0.10), nitrates (0.06±0.02), and dienes with five or fewer carbon atoms (e.g., isoprene, 1,3- furan (0.046±0.014) from the OH radical reactions with butadiene[13BD],2-methyl-3-butene-2-ol)havebeenshown 13BD conducted in a flow reactor. Kramp and Paulson tocontributetoSOAformation(Claeysetal.,2004;Edneyet (2000)studiedtheformationoftwotoxicgasreactionprod- al.,2005;Krolletal.,2006;Surrattetal.,2006,2010;Satoet ucts, acrolein and 1,2-epoxy-3-butene from the ozonolysis al.,2011;Jaouietal.,2012;Zhangetal.,2012,2014;Angove of 13BD, and reported yields of 52±7 % for acrolein and etal.,2006).Althoughsignificantadvanceshavebeenmade 3.1±0.5%for1,2-epoxy-3-butene.Sato(2008)reportedthe toward elucidating 13BD oxidation products and their role presence of nitric acid, glyoxylic acid, pyruvic acid, ox- in SOA formation, the importance of 13BD to atmospheric alicacid,tetrols,nitrooxybutanetriols,anddinitrooxybutane- SOA formation is not well known at present, but its contri- diols in an experiment involving the photooxidation of a butioncouldbesignificantinurbanareasinfluencedbyhigh 13BD/NO/CH ONO/air mixture in which an SOA yield of 3 13BDemissions. 0.025 was found. Recently, Sato et al. (2011) studied SOA 1,3-Butadiene, a conjugated diene, is considered a sig- formationfrom13BD/NO and13BD/NO /H O reactions, x x 2 2 nificant anthropogenic organic compound, with an annual and found SOA yields between 0.021 and 0.178. In that emissionrateof6milliontonsworldwide(BerndtandBöge, study, a series of oligomeric compounds were tentatively 2007), and can serve as a functional analog for isoprene. identified,includingglycericacidoligomersandoligoesters 13BD is widely used in the chemical industry, mainly formedfromthedehydrationreactionofnitrooxypolyolsand through processing of petroleum to make synthetic rubber, glycericacid.Todate,therehavebeenverylimitedstudieson resins, and plastics (Berndt and Böge, 2007). 13BD is clas- SOAcharacterization,andonlyafewreactionproductshave sified as a hazardous compound in the 1990 Clean Air Act beenreported(Satoetal.,2011). Amendments (CAAA; US EPA, 1996), a carcinogenic and The detection of glyceric acid, glycerol, threitol, and toxic pollutant, and a genotoxic chemical in humans and erythritol in forest and tropical ambient samples (Dece- other mammals (Acquavella, 1996; US EPA, 2002). The sari et al., 2006; Wang et al., 2008; Claeys et al., 2010; mainsourcesof13BDintheatmosphereincludeautomobile Fu et al., 2010), in which erythritol was considered a exhaust as a combustion byproduct, tobacco smoke, gaso- marker for fungal spores or biomass burning (Claeys et lineevaporativeemissions,biomassburning,andforestfires al., 2010; Fu et al., 2010), clearly suggests the importance (Anttinen-Klemettietal.,2006;Dollardetal.,2001;Eatough of 13BD chemistry in the atmosphere. Laboratory experi- Atmos.Chem.Phys.,14,13681–13704,2014 www.atmos-chem-phys.net/14/13681/2014/ M.Jaouietal.:Atmosphericoxidationof1,3-butadiene 13683 ments have shown that glyceric acid, which has a skele- Experimentswereconductedineithertheabsenceorpres- ton with four carbon atoms similar to that of 13BD, repre- ence of NO . The influence of aerosol acidity as well as x sentsabuildingblockofoligomersandoligoestersin13BD relative humidity on SOA formation is described in an ac- SOA (Sato et al., 2011). High emissions of 13BD in urban companying paper (Lewandowski et al., 2014). For experi- areas could be a significant source of C4 polyols, ozone, mentswithNO ,13BDandNOwereaddedtothechamber x acrolein, and formaldehyde, and could influence the urban through flow controllers to the target concentration. For ex- atmosphericchemistry.C4polyols,whichareknowntohave perimentsintheabsenceofNO ,thephotolysisofH O was x 2 2 high water solubility, were not found to contribute to cloud thesourceofOH.H O asa50%aqueoussolutionwasin- 2 2 formation any more than other atmospheric organic com- jectedthroughasyringepumpintoaheatedglassbulbwhere pounds(Ekströmetal.,2009). it vaporized and then was mixed rapidly by the main dilu- Giventhepresenceofthreitol,erythritol,andglycericacid tion air flow. H O concentrations were determined by UV 2 2 inforestareasandthehighemissionof13BD(apossiblepre- absorptionusingaconventionalozonemonitor,asdescribed cursortothesecompounds)inruralareas,itiscrucialtoas- previously(Kleindienstetal.,2009).Fortheseexperiments, sesstheextenttowhichweunderstandSOAformationfrom 13BD was added as described above. Ammonium sulfate theoxidationof13BD.Inthispaper,gasandparticleorganic seedaerosolwasalsointroducedintothechamberforallex- compoundsfromthephotooxidationof13BDinthepresence perimentstoserveasacondensingmediumforsemivolatile and absence of NO were examined. Reaction products in organicproductsthatmightform. x the gas phase were measured using derivatization and non- NO and NO were monitored with a TECO (Franklin, x derivatization techniques. Organic compounds in the parti- MA) oxides of nitrogen analyzer (model 42C) with an in- clephasewereexaminedaswellasaerosolyieldsandother line nylon filter used to prevent nitric acid from entering aerosol properties. The main focus was to identify organic the analyzer. Ozone was measured with a Bendix (Lewis- compounds that can be used as possible unique markers in burg, WV) ozone monitor (model 8002). 13BD concentra- ambient aerosol. Based on the analysis of field and labora- tionsweremeasuredintheinletandwithinthechamberina torysamples,thetracermethodreportedbyKleindienstetal. semi-continuousfashionbygaschromatographywithflame (2007)wasthenusedtoestimatethecontributionof13BDto ionizationdetection(GC-FID). organicaerosolinambientair. Low molecular weight carbonyl and dicarbonyl com- pounds including formaldehyde, glyoxal, and acrolein were identified and quantified using derivatization with DNPH 2 Materialsandmethods (2,4-dinitrophenyl-hydrazine). Air samples were drawn for 20minatarateof0.50Lmin−1throughanimpingercontain- All chemicals, including the derivatization reagents ing 5mL of a DNPH solution in acetonitrile. The resulting O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochlo- solutions were analyzed by high-performance liquid chro- ride(PFBHA)andacombinationofN,O-bis(trimethylsilyl) matography with a ultraviolet detector (HPLC/UV) (Smith trifluoroacetamide (BSTFA) with 1% of trimethylchlorosi- etal.,1989).Anexternalstandardsolutioncontaining16hy- lane (TMCS) as catalyst, were purchased from Aldrich drazones and dihydrazones was used for the identification Chemical Co. (Milwaukee, WI) at the highest purity andquantificationofcompoundsformedduringthereaction. availableandwereusedwithoutfurtherpurification. Forcarbonylcompoundswhosestandardsarenotavailable, Experiments were conducted in a 14.5m3 parallel-piped, the technique allows their concentrations to be estimated stainless-steel, fixed-volume chamber with 40µm TFE fromtheaveragemolarextinctioncoefficientofthestandard Tefloncoatedwalls.Acombinationoffluorescentbulbswas compounds.Sincetheextinctioncoefficientislargelydepen- used in the chamber to provide radiation distributed over dent on the chromophore and not on the substituent group the actinic portion of the spectrum, similar to solar radia- (Smithetal.,1989),thesehydrazonesshowahighdegreeof tion between 300 and 400nm. UV-313 sunlamps were also consistency. Peroxyacryloyl nitrate (APAN) was also mea- usedforsomeirradiationsintheabsenceofNO .Thesmog x suredinthisstudy. chamber was operated either in static mode (as a conven- Gas-phase compounds with higher molecular weights tionalbatchreactor)or,forexperimentsrequiringlargesam- were collected with 60cm, four-channel XAD4-coated pling volumes, in dynamic mode (flow mode), to produce a annular denuders. The denuders were analyzed for steady-stateconcentrationofgas-andparticle-phasereaction organic compounds by extracting them in a 1:1 products. The relative humidity and temperature were mea- dichloromethane/methanol mixture and then derivatiz- suredusinganOmegaEngineering,Inc.(Stamford,CT)dig- ing with a BSTFA/TMCS mixture (Jaoui et al., 2004). ital thermo-hygrometer (model RH411). An integrating ra- Ketopinic acid (KPA) was used as an internal standard. diometer(EppleyLaboratory,Inc.,Newport,RI)wasusedto Extracts were then analyzed by gas chromatography–mass monitorlightintensitycontinuously.Detailsofthechamber spectrometry (GC–MS) using the techniques described anditsoperationcanbefoundinKleindienstetal.(2006). below. www.atmos-chem-phys.net/14/13681/2014/ Atmos.Chem.Phys.,14,13681–13704,2014 13684 M.Jaouietal.:Atmosphericoxidationof1,3-butadiene Organiccarbonconcentrationsintheparticlesweremea- sistoidentifycompounds.ExperimentER442,inwhichsix suredusingasemi-continuouselementalcarbon–organiccar- sample denuders and filters were collected simultaneously, bon(EC–OC)instrument(SunsetLaboratories,Tigard,OR). wascarriedouttoinvestigatetimeprofilesofreactionprod- TheEC–OCinstrumentusesaquartzfilterhousedwithinthe ucts using a BSTFA/TMCS mixture derivatization. The dy- ovenfortheanalysis.SOAfromthechamberwaspumpedat namic experiments were also conducted in stages by irra- a rate of 8Lmin−1 through the quartz filter. To remove the diating 13BD/NO or 13BD/H O mixtures in the absence x 2 2 interferenceofgas-phaseorganiccompoundsintheeffluent, or presence of SO or acidic seed to produce acidic sulfate 2 a carbon-strip denuder was placed in line before the quartz aerosol. For these experiments, the reactant mixture at each filter. The duty cycle for the OC measurement was 0.75h, stagewasallowedtocometosteadystateoveraperiodof18 withasamplecollectiontimeof0.5handananalysistimeof to 24h before sampling began. The results of these experi- 0.25h. mentsarereportedinanaccompanyingpaper(Lewandowski SMPS (Scanning Mobility Particle Sizer) (model 3071A, etal.,2014). TSI, Inc., Shoreview, MN) and CPC (Condensation Parti- Inadditiontolaboratoryexperiments,ambientPM sam- 2.5 cle Counter) (model 3010, TSI, Inc., Shoreview, MN) in- ples were collected on either quartz or Teflon-impregnated struments were used to measure the aerosol size distribu- glass-fiber filters. Field sample filters were Soxhlet ex- tion,volume,andtotalnumberdensity.TheSMPSoperating tracted, and the resulting extracts were evaporated to dry- conditions were 2Lmin−1 sheath flow, 0.2Lmin−1 sample ness and derivatized with a BSTFA/TMCS mixture (Jaoui flow,and19to982nmsizescan.Theeffectiveenthalpiesof et al., 2004). Detailed descriptions of some of these field vaporization of 13BD aerosol were also measured with the campaignshavebeenprovidedbyLewandowskietal.(2007, SMPSbyaddingaheatedinlet,whichallowstheaerosolto 2008) and Kleindienst et al. (2010). The focus of the field be subjected to a range of fixed temperatures (Offenberg et sampleanalysishasbeentoinvestigatethepresenceof13BD al.,2006). organictracercompoundsinambientPM . 2.5 Aerosol samples were collected at a flow rate of 15Lmin−1 with47mmglass-fiberfilters(PallGelmanLab- oratory,AnnArbor,MI)forofflineanalysis.Thesesamples 3 Resultsanddiscussion weresonicatedwithmethanol,andtheextractswerederiva- tized with a BSTFA/TMCS mixture (Jaoui et al., 2004). The initial conditions for experiments involving the oxida- The resulting derivatized extracts were analyzed by GC– tionof13BDaregiveninTable1.Forexperimentsconducted MS on a ThermoQuest (Austin, TX) GC coupled with an in the presence of NO , the initial 13BD concentrations x ion trap mass spectrometer. The temperature of the injec- ranged from 3.2 to 8.4ppmC, and the NO concentrations torwas270◦C,andtheGCwasoperatedinsplitlessmode. ranged from 340 to 917ppb. Most experiments were con- A60m,0.25mminnerdiameter,RTx-5MScolumn(Restek, ductedunderdryconditions(RH<3%),exceptforER444-1 Inc.,Bellefonte,PA)witha0.25µmfilmthicknesswasused. (Table1).IntheabsenceofNO ,theinitialH O concentra- x 2 2 The oven initial temperature was 84◦C for 1min, which tionwas2.2ppmforER441-1and3.8ppmforER443-1. was then increased by a temperature ramp of 8◦Cmin−1 to ER439 was conducted as a survey experiment in which 200◦C,followedbya2minhold,andthenasecondrampof sufficientaerosolmasswascollectedonglass-fiber(GF)fil- 10◦Cmin−1 to 300◦C. The ion source, ion trap, and inter- tersandusedforGC–MSanalysissolelyforthepurposeof face temperatures were 200, 200, and 300◦C, respectively. identifyingreactionproducts.Thegas-phaseandaerosolex- 2µLoftheextractwasinjectedinCIand/orEImodes. tracts were solvent extracted, derivatized, and analyzed by Forthebatchmodeexperiments,NO and13BDwerein- GC–MSorHPLC.Gasandaerosolextractswerederivatized x troduced continuously into the chamber at the beginning of using BSTFA or PFBHA + BSTFA double derivatization. theexperimentuntilsteadystatewasreached.Then,thereac- Thesetechniquesprovideasensitivemethodforidentifying tionwasstartedbyturningoffthereactant(NO and13BD) and quantifying low concentrations of lightly to highly oxi- x flows at the same time the lights were turned on. Samples dizedorganiccompounds.TheBSTFAsinglederivatization weretakenforgasandparticleconstituentsatsamplingpe- techniqueprovidesgoodquantitativeanalysisduetobothits riods appropriate for the required masses needed for analy- simplicityanditsefficiency(Jaouietal.,2004).Althoughthe sis. In flow mode experiments, reactants were added to the double derivatizations are not quantitatively rigorous, they chamber continuously, and the effluent was withdrawn at provide additional structural information that aids in identi- the same flow rate for filter collection and online gas and ficationoforganicconstituentsbyderivatizingthecarbonyls particle analysis. The chamber was operated as a batch re- that otherwise would not be detected by BSTFA derivatiza- actor in experiments ER439 and ER442 and as a flow re- tionalone. actor with a nominal total flow of 60Lmin−1 to produce The analysis of laboratory-generated gas-phase and SOA thesteady-statereactionmixturesinER440,ER441,ER443, products from 13BD oxidation shows a series of organic and ER444 (Table 1). Irradiation ER439 was conducted as compoundscontainingketone,carboxylicacid,and/oralco- a survey experiment only, and was used in GC–MS analy- holic functions. Many of these compounds do not have au- Atmos.Chem.Phys.,14,13681–13704,2014 www.atmos-chem-phys.net/14/13681/2014/ M.Jaouietal.:Atmosphericoxidationof1,3-butadiene 13685 Table1.Initialconditionsforexperimentsinvolving1,3-butadiene(13BD)oxidation.Theexperimentswereconductedwiththechamber operatedinadynamic(flow)mode,exceptforER439andER442conductedinstatic(batch)mode.T:temperature;RH:relativehumidity. Seedaerosolat10µgm−3wasused.GC–MSanalysiswasdoneonlywhenNOxwaspresentinthesystem. Exp.no. Purpose 13BD 13BD NO H2O2 T RH (ppmC) (µgm−3) (ppb) (ppm) (◦C) (%) ER439 Test,compound 8.4 4614 553 – – <3 identification ER440-1 Tracers,parameters 6.3 3454 917 – 22 <3 ER440-2 Tracers,parameters 3.2 1736 917 – 22 <3 ER441-1 Tracers 5.4 2973 – 2.2 24 <3 ER442 Timeseries,tracers 5.8 3186 724 – – <3 ER443-1 Tracers 6.3 3487 – 3.8 24 <3 ER444-1 Tracers,parameters 6.7 3656 340 – 22 30 thenticstandards,andtheiridentificationswerebasedonthe mixture showed the presence of 10 significant peaks in the interpretation of the mass spectra of the derivatized com- BSTFAderivativesand7significantpeaksinthePFBHA+ pound (Jaoui et al., 2004, 2005). The identification should BSTFA derivatives. However, a significant number of rela- beregardedastentative,exceptforcompoundsthathaveau- tivelysmallpeaksassociatedwithbothderivatizationswere thentic standards. The recognition of characteristic ions as- clearly observed in the particle phase, reflecting the com- sociatedwithaparticularderivatizationschemewasusedto plexity of the oxidation of 13BD. Compounds identified in guide the analysis of chemical ionization (CI) mass spec- thepresentstudyaresummarizedinTable2,whichcontains tra of the derivatives. BSTFA reacts with -COOH and -OH proposedstructuresforproductsidentifiedwhenpossibleas groups to form BSTFA derivatives. Characteristic ions are wellasmolecularweights(MWs)oftheunderivatizedcom- m/z 73,75,147,and149.Adductionsfromthederivatives pounds(Mc). include m/z M+•+73, M+•+41, M+•+29, and M+•+1; fragment ions include m/z M+•−15, M+•−73, M+•−89, 3.1.1 SOAproducts M+•−117, M+•−105, M+•−133, and/or M+•−207. PF- BHA reacts with each nonacidic >C=O group to form an Aerosolparameters oximederivative.InCImode,thebasepeakformostoximes is M+•+1 or 181, while other fragments/adducts include Theproductionofaerosolwasfoundtobedependentonthe m/zM+•+29,M+•+41,M+•−181,andM+•−197.Dou- conditions under which the experiments were carried out, ble derivatizations result in adducts and fragments that in- in particular the presence of NO in the system. The oxi- x clude characteristic ions from each single derivatization. In dation of 13BD produced non-negligible levels of aerosol. many cases, samples were run in electron ionization (EI) Except for a minor organic nitrate channel, the photooxi- mode to produce greater fragmentation for additional struc- dation system in the presence of NO converts virtually all x turalinformation. RO formedintoROradicals,whichthendecomposeoriso- 2 merizetoproducecarbonylorhydroxycarbonylcompounds 3.1 Productidentification (Atkinson,2000).WithoutNO inthesystem,RO radicals x 2 typically react with HO or self-react to produce a product 2 In the present study, mass spectra of more than 60 deriva- molecule with four carbons while adding functional groups tivecompoundshavebeenrecorded,forwhichrepresentative totheproduct.Theseproductsaresufficientlynonvolatileto examplesareshown.Theapproachusedfortheiridentifica- condenseintotheparticlephase. tion is as follows: peaks detected in blank and background Thesecondaryorganiccarbonyield(Y )andsecondary SOC chamber samples were eliminated first. A peak was associ- organicaerosolyield(Y )aregenerallydefinedusingthe SOA ated with a reaction product only if its corresponding mass following relationships: Y =SOC/(cid:49)HC and Y = SOC C SOA spectrum was consistent with the fragmentation pattern of SOA/(cid:49)HC,whereSOCisthecorrectedorganiccarboncon- thederivatizationreagentusedasnotedabove.Allrecorded centration, (cid:49)HC is the reacted hydrocarbon mass concen- spectrawerecomparedwithspectraderivedfromvariousref- tration, and (cid:49)HC is the reacted carbon mass concentra- C erencecompoundsandtheliterature.Typicaltotalionchro- tion of the hydrocarbon obtained from Table 3. The SOA matograms of samples taken from experiment ER439 (Ta- concentration was obtained from gravimetric measurement. ble 1) are shown in Fig. 1 as BSTFA (top) and PFBHA The volume concentrations from the SMPS (nLm−3) are + BSTFA (bottom) derivatives of 13BD SOA. For clarity, alsoreportedinTable3.TheSOAdensitywasestimatedus- only the main products are shown. GC–MS analysis of the ingbothfiltermassesandSMPSdata(Table4).Anaverage www.atmos-chem-phys.net/14/13681/2014/ Atmos.Chem.Phys.,14,13681–13704,2014 Table 2. Summary of gas-phase and SOA products generated from the oxidation of 1,3- 2 butadiene. MW Nomenclature Structure –1 (g mol ) Table 2. Summary of gas-phase and SOA products generated from the oxidation of 1,3- 1,3-Butadiene 2 butadiene. 54 MW Nomenclature Gas phase Structure (g mol–1) Table 2. Summary of gas-phase and SOA products generated from the oxidation of 1,3- TaTblaeb 2le. S2.u Smummamrya royf o gf agsa-sp-hpahsaes ea nandd S SOOAA p prroodduuccttss ggeenneerraatteedd ffrroomm tthhee ooxxididaatitoio nn o of f1 ,13,-3- Formaldehyde 30 2 1,3-Butadiene butadiene. 2 2 Table 2. STuTamabblmlee 2 a2.r. ySSu uommfm mgaaarrsyy- opoffh ggaaassse--pp ahhanassdee aSanbnOdbdu AuSStaOtO adpAAdir ie oppendrrnooeuedd.c.uu tccstts sg ggeeennneeerrraaatteeteddd ffr r oformmo mtt hhee t oohxxeii ddoaaxttiioiodnna ootffi5 o114,n,33 --of 1,3- 22 13686 bbuuttaaddiieennee.. M.JaouietaMl.:WAt mosphericoxidationof1,3-butadiene 2 NomTeanbcllea t2u. rSeu mmary of gas-phase anbduG StaaOdsA ip ephnroead.su ec tsS gternuecrtautered from the oxidation of 1,3- (g moMl–M1W) W AcetaldNeohNmyo2dem nece lnactluarteu re butadiene. SSttrruuccttuurree MMWW 44 NoFmoermn1,ca3ll-adBNtNeuuoohtmrmaeTpydeoa desnbinseelciecnb llal2eeat. tuiSusrouremme emr.aryofgas-phaseandSOAproductsgenSeSSrattttrrreuuudcccfttrtuuoumrreerte h eo xidationof((1ggM,3 m-mWb(uoo(g tl alg–– dM1m1i )e)m 3 noWe0.ol O–l 1l–i)1g o)e sterspresentedhereareonlyone NomencTlaabtuler e2 . Summary of gas-phase and SOA productsS gtreunecrtautreed fro m the oxidat(iogn m ofo 1l (5 –,g314-) m o l–1) Acrolei1n,3 11-,,B33A-u-BBctaeuutdttaaialeddd1niei1e,ee3,hn3n2 -1y- Bee,Bd3 u u-etBta auddtiaieednniNeee on me enclaN1t,uo3rm-eB euntcaldaiteunree Gas pbhuatasdeie ne. SSttrruuccttuurree MWM(g5W4m o 5l5−441 ) 545B4 4S4 T F5A6M W– (gmol−1) GGaass pphhaassee (g mol–51)4 54 Gas phase Formaldehyde Gas phase 30 Gas phase FFoorrmmaallddeehhyyd1de,e3 - ButadGieanse phase Gas phase 54 3300 Acrolein 56 FormaldehydFoer maldehyde Gas phase 30 30 Formaldehyde 30 Acetaldehyde Formaldehyde 30 44 – Glyoxal FormaldehAycdeeta ldehydFeo rmaldehyde 30 44 30 58 Acetaldehyde 44 Acetaldehyde 44 AcAetcaGelldtyaeolAhdxceyarhdol yleed ine AcetaldehAycdeet aldehyde 4444 56 454484 – Acrolein 56 AcetaldehAycdreo lein 56 44 Acrolein 56 Acrolein Acrolein 5566 – Glycolaldehyde 60 Acrolein 56 AcroGleliyncG ollyaolGxdlaeylho xyadl e 585 8 6506 Acrolein Glyoxal 58 56 Glyoxal Glyoxal 58 58 Glyoxal 58 – MethylglyGolyxoaxlGa ll ycGollaylcdoelahlyddeheG ydlyec olaldehyde 60 606 0 58 72 GlyoMxaelt hylgGllyyGocolxylaacolld laelhdyedhey de Glycolaldehyde 60606 0 7528 – Glyoxal 58 Methylglyoxal 72 MethMylegthlyyolgxlaylo xal 727 2 MetMhyetlhgylylgolxyaolx al Methylglyoxal 72727 2 – Glycolaldehyde 60 MalonaldehMyadloen aldehyde 72 72 Glycolaldehyde Malonaldehyde 72 60 Glycolaldehyde 60 MalMoMnaaalMlloodnanelaoahllndydaedelhdheye ydhdeye d e Malonaldehyde 727277 272 2 – Methylglyoxal Butenedial 74 72 Butenedial 74 Methylglyoxal 72 ButenediaMl ethylglyBouxBtaeulnt eednieadli al Butenedial 74747 4 72 74 – ButeBnuetdeinaeld ial 3-Hydroxy-propanaldehyde 74 7744 Malonaldehyde 72 3-Hydroxy-propanaldeh3y-dHyed roxy-propanaldehyde 74 74 – 3-H3-yHdryodxroyx-pyr-porpoapnaanladledheyhdyed e 27 747 4 MaMloanloanld3a-elHdhe3yyh-ddHryoeydx deyr o-pxyro-ppraonpaalndaelhdyehdyed e 7744 7722 3-Hydroxy-propanaldehyde 74 Hydroxypyruvaldehyde 88 Hydroxypyruvaldehyde 88 Butenedial Hydroxypyruvaldehyde 88 74 – 227277 27 BuBteunt eendeiadli al 27 7744 Glyceraldehyde 90 Glyceraldehyde 90 – 3-GHlyycderroaxlyd-ephryodpea naldehyde 27 9704 3-Hydroxy-propanaldehyde Particle phase 74 3-Hydroxy-propanaldehyde 74 Particle phase GlycoAltimc oasc.iCd hem.Phys.,14,13681–13704,2014 w76w w.atmos-chem-phys.net/14/13681/2014/ 27 Glycolic acid 76 27 27 Oxalic acid 90 Oxalic acid 90 Glycerol 92 Glycerol 92 Glyoxylic acid 74 Glyoxylic acid 74 Oxopyruvic acid 102 Hydroxypyruvic acid 104 Oxopyruvic acid 102 1,3,4-Trihydroxy-1-butene 104 Hydroxypyruvic acid 104 1,4-Anhydroerythritol 104 1,3,4-Trihydroxy-1-butene 104 28 1,4-Anhydroerythritol 104 28 Hydroxypyruvaldehyde 88 Hydroxypyruvaldehyde 88 Glyceraldehyde 90 Hydroxypyruvaldehyde 88 Hydroxypyruvaldehyde 88 Particle phase GlyHcyerdHarloyddxeryhopxyyydrpueyv raulvdaelhdyedhyed e 88889 0 Hydroxypyruvaldehyde 88 Glyceraldehyde 90 GlycolicG alyccider aldehyde 90 76 Particle phase GlyceMra.lHJdayeodhuryoidxeyetp ayl.r:uAvatmldoehspyhdeer icoxidationof1,3-butadiene 88 90 13687 Glyceraldehyde 90 Particle phase Particle phase Glyceraldehyde 90 Glycolic acTidab le2.Continued. 76 Oxalic acid Particle phase 90 GlyGcolylicco laicci adc Gidly ceraldehyNdoem enclature Particle phase Structure MW(gm9o0l −1)767 B6S TFAMW(gmol−1) Particle phase Particlephase Glycolic acid 76 OxaGlliycc aocliicd acid Particle phase 769 0 Glycolic acid Glycolicacid 76 76 220 GlyceOrxoalO lixca alicci dac id 909 09 2 Glycolic acid 76 Oxalic acid 90 Oxalic acid Oxalicacid 90 90 234 Glycerol 92 Oxalic acid 90 Oxalic acid 90 Glycerol 92 Glycerol 92 Glyoxylic acid 74 Glycerol 92 Glycerol 92 308 Glycerol 92 Glycerol Glycerol 92 92 Glyoxylic acid 74 Glyoxylic acid 74 Glyoxylic acid 74 Glyoxylic acid Glyoxylicacid 74 74 146 Glyoxylic acid 74 Glyoxylic acid 74 OxopyruviGcl yaocxiydl ic acid 74 102 Oxopyruvic acid 102 Oxopyruvic acid 102 OxopyruOvxiocp aycruidv ic aOcxiodp yruvicacid 101202 102 174 Oxopyruvic acid 102 OxOoxpoypruyvruicv iacc aidc id 110022 Hydroxypyruvic acid 104 Hydroxypyruvic acid 104 Hydroxypyruvic acid 104 Hydroxypyruvic acidH ydroxypyruvicacid 104 104 248 Hydroxypyruvic acid 104 Hydroxypyruvic acid 104 HyHdyrodxroyxpyypruyrvuicv iacc aidci d 110044 1,3,4-Trihydroxy-11,3-,b4-uTtriehnyde1r o,3x,4y--T1r-ibhuydteronxey -1-butene 101404 104 320 1,3,4-Trihydroxy-1-butene 104 1,3,14,-3T,4ri-hTyridhryodxryo-x1y--b1u-bteunteen e 11004 4 1,3,4-Trihydroxy-1-butene 104 1,31,,43-,T4-rTihryih1dy,r4do-Arxonyxh-yy1d--1rbo-u1eb,rt4uye-tAtnhenrenhi tyeod lr oerythritol 101404 110044 248 Glyceric acid 106 1,4-A1n,h41-yA,d4nr-1Aoh,4eyn-rdhAyrynotdhheryorrydietrtroohyelrt hrityrotihtlo rilt ol 1101040 414 04 Glyceric acid 106 Glyceric acid 28 106 1,4-1A,4n1-h,A4 y-nAdhrnyohdeyrrodyertorhyerrtihyttrohiltr oitGlo lyl cericacid 106 1100441 04 322 Ketomalonic acid 118 Ketomalonic acidK etomalonicacid 28228 28 8 118 118 262 Ketomalonic acid 28 118 28 28 2,4-Dihydroxy-1,3-but2a,n4-eDdihiyodrnoexy -1,3-butanedione 118 118 262 2,4-Dihydroxy-1,3-butanedione 118 2,4-Dihydroxy-1,3-butanedione 118 ErythrosEe rywthwrwo.saetm os-chem-phys.net/14/13681/2014/ Atmos.Chem.Phys.,14,13681–13704,2014 120 120 Erythrose 120 L-Threitol 122 L-Threitol 122 L-Threitol 122 DL-Threitol 122 DL-Threitol 122 DL-Thrmeeitsool- Erythritol 1221 22 meso-Erythritol 122 Malic acid 134 meso-Erythritol 122 Malic acid 134 Threonic acid 136 Malic acid 134 Threonic acid 136 Erythreonic acid 136 Threonic acid 136 Erythreonic acid 136 29 Erythreonic acid 136 29 29 Glyceric acid 106 Glyceric acid 106 Glyceric acid 106 KetomGalloynceicri ca caicdid 10161 8 Glyceric acid 106 Ketomalonic acid 118 KetomGlaylcoenriicc aacciidd 10161 8 KetomalGonlyicce raicc iadc id 1061 18 2,4-Dihydroxy-1,133-6b88utanedione M.Jaouiet1a1l.8: Atmosphericoxidationof1,3-butadiene Ketomalonic acid 118 Ketomalonic acid 118 2,4-D2,i4h-yDdirhoyxdyro-1xy,3-1-b,3u-tbaunteadneiodnioen e 11181 8 Ketomalonic acid 118 2,4-Dihydroxy-1,3-butanedione 118 Erythrose 2,4-Dihydroxy-1,3-butanedione 118 120 2,4-Dihydroxy-1,3-butanedione 118 Erythro2se,4 -DTaibhlyed2r.oCxoyn-t1in,3u-ebdu.tanedione 118 Erythrose 120 E rythrose Nomenclature Structure MW(gmol−112)102 0B STFAMW(gmol−1) Erythrose Erythrose 120 L-Threitol Erythrose 122 120 Erythrose 120120 336 L-Threitol 122 L-Threitol 122 L-Threitol 122 L-Threitol 122 DL-ThreitolL -TLh-Trehitroeilt ol L-Threitol 122112222 122 410 DL-Threitol 122 DL-DTLh-rTehitroeli tol 12122 2 DL-Threitol 122 DLD-TLh-Trehirtoeilt ol DL-Threitol 122112222 410 meso-Emryetshor-iEtoryl thritol 12122 2 mesmo-eEsor-yEthryritthorilt ol 12122 2 memsoe-smEoer-sEyotr-hyErtrihytrotihlto rilt ol meso-Erythritol 12211212222 2 410 Malic aMciadl ic acid 13143 4 Malic acMida lic acid 1341 34 Malic aMcaiMdli acl iacc iadc id Malicacid 134113344 1 34 350 Threonic acid 136 Threonic acid Threonic acid 136 136 Threonicacid 136 424 ThrTeohTrnehiocrne aoiccn iiadcc aidc id 11313663 6 Threonic acid 136 ErythreoEnryitch raecoindi c acid 1361 36 Erythreonic acid Erythreonicacid 136136 424 ErythreEorynEtihcryr eathocrniedioc n aicc iadc id 113631 63 6 Erythreonic acid 136 L-Tartaric acid 150 L-Tartaric acid 150 L-Tartaricacid 150 438 29 29 29 2299 112200 Erythrulose Erythrulose Erythrulos2e9 120 336 29 Oligoesters: particle phase Oligoesters: particle phase Glyceric acid dimer 194 Glyceric acid dimer 194 GGlylycceerircic Aa actcmidido-t-sht.hrCreheooenmnici.c Pa achciyidsd ., ee1sst4te,er1r 3681–13704,2014 222244 www.atmos-chem-phys.net/14/13681/2014/ GGlylycceerircic a accidid-t-hthrreeitiotol le esstteerr 221100 TThhreroeonnicic a accidid-g-glylycceerrool le esstteerr 221100 HHyyddroroxxyyppyyruruvvicic a accidid--tetettrrooll eesstteerr 220088 GGlylycceerircic a accidid-g-glylycceerrool le esstteerr 118800 Oxalic acid-glycerol ester 164 Oxalic acid-glycerol ester 164 Oxalic acid-MW104 176 Oxalic acid-MW104 176 Oxalic acid-glyceric acid Oxalic acid-glyceric acid 30 30 L-LT-aTrtaarrtaicr iacc aicdi d 115500 L-TLa-Trtaarrtiacr iacc aidc id 115500 L-Tartaric acid 150 L-Tartaric acid 150 L-Tartaric acid 112500 ErLy-tThraurtlaorsiec acid 1511022 00 Erythrulose 120 M.JaouietaElE.:rryEyAttrhhytrrmtuuhllroooussslpoees hee ricoxidationof1,3-butadiene 12 0 13689 120 Table2.ContinEureydEt.Ehrrryuythtlhorrusuello ossee OOOOOllliliigilgggiooogoeeoeesssestttsteeeterrerrssrss:::s: : pppp paaaaarrrrrttttiitiicccicclllleeleee pp ppphhhhhaaaaassssseeeee 121 02 0 Nomenclature Structure MW(gmol−1) BSTFAMW(gmol−1) Glyceric acid dimer Oligoesters: particle phase 194 GlyGcleyrcice raicc iadc iddi mdiemr er 119944 OGligloyecsetreircs :apcaidrt idcliempehra se OOligliogeosetsetrers:s :p paarrttiiccllee pphhaassee 194 Glyceric acid dimer 194 Glyceric acid dimer 194 Glycericaciddimer 194 482 GGlylGcyelcyreicrcei crai ccai cdaic ddi-ditm hdrieemro enri c acid ester 12912494 4 GlyGcleyrcice raicc iadc-itdh-rtehorenoicn iacc aidci des etestre r 222244 Glyceric acid-threonic acid ester 224 Glyceric acid-threonic acid ester 224 GlycerGiclyacceidri-cth arceiodn-itchraecoindiecs atecrid ester 222244 584 Glyceric acid-threonic acid ester 224 GGlylcyecreirci ca caicdi-dt-hthreroeintoicl aesctiedr ester 221204 Glyceric acid-threitol ester 210 Glyceric acid-threitol ester 210 GGlGylclyyecrcieecrriaiccc iaadcc-tiihddr--etthihtroreeliiettosotlle reesstteerr 221201100 570 Glyceric acid-threitol ester 210 ThGrelyocneirci ca caicdid-g-tlhyrceeitrooll eesstteerr 221100 GlyTcherreiocn aicc iadc-itdh-rgeliytocle reoslt eers ter 221100 Threonic acid-glycerol ester 210 ThTrheorenoicniacc iadc-gidly-gcelyrocleersotle rester 212010 570 ThreTohnrieco naicci da-cgidly-gcleyrcoelr oels teesrt er 21201 0 HyTdhrroexonyipcy arucivdi-cg alyccider-otel terostle er ster 221008 ThHreyodnriocx aycpiydr-ugvlyicc earcoidl -etsetteror l ester 220180 HHyydrdorxoyxpyypruyvruicvaicc iadc-tiedtr-oteltersotle rester 202808 496 HHyyddHrrooyxxdyyroppxyyyrrupuvyvriiucc v aaiccc iiaddc--ittdee-tttrreootllr oeelss etteesrtre r 2022800 88 Hydroxypyruvic acid-tetrol ester 208 Glyceric acid-glycerol ester 180 GHlyycGedrrliyoccxaeycrpiidcy- raguclyvidcice-gr aolyclciedes-tretoerlt reoslt eers ter 118280008 468 Glyceric acid-glycerol ester 180 GGllyyccGeelrryiiccc e aarciccii dda--cggidllyy-gccleeyrrcooellr oeesls tteeesrrt er 1811088 00 OxaOlixGcaallyciccide a-rgcicily dac-cgeirldoy-lcgeelysrotceler reoslt eers ter 111866044 380 GlyOcxearliicc aacciidd--ggllyycceerrooll eesstteerr 116840 OxalOicx aacliicd a-gcildy-cgelryocle reoslt eesr ter 16146 4 OOxOaxxliaaclliiaccc iaadcc-iMidd--Wggll1yy0cc4eerrooll eesstteerr – 117166644 392 OxOaxliacli ac caicdi-dM-gWlyc1e0r4o l ester 116746 Oxalic acid-MW104 176 OxalOicx aacliicd a-McidW-M1W041 04 17167 6 OOOxxxOaaaOOlxlliiixacxccl aa iaaallcicicc cciaii dddaca--c-cigMdMiiddl-yt--WWettceetert1t1rorr00oool4l 4ll ester 111199117060796 460 OxaOlOixOcxaaxalcialciildci ac- ag cacilcydiidc-dg-e-grlMiylcycWcaeecr1iricdi0c 4a a ccidid 117768 394 OOOOOOxxxOxxaaxaaaOxOllalOliilOaiiclcixxcciclx xacai aa acaalal accilai cclccicaiiicciii ddc cddai da a-i-dca-c--dgtcM-gicige-idtldildttleyd--yreyW-tgct-otrgccetrleoleeltey1o ryrtlrrc0lior cii coecl4ce rl r a iaaiccccc i aiidaddcc i idd 11919111 090979 0 060 OxalOiOcOOxxaxaxaclaaliiilldccii- cc ata eacactcciirddiiodd--lt-t-hetthhtrrreroeeoloon nniicicc a aaccciiiddd eeesssttteeerrr 11229900200880 8 478 Oxalic acid-glyceric acid OxOaOlxixcaal ailcicc ia dac-citdihd-rt-hethorerneoioncni ciac ca iacdci ided se etsesttree rr 22002880 8 Oxalic acid-threonic acid ester 3300 208 OOxxalOaiOclOOxixcaxaxac laaaliiilldcccii- cic atda hacac-rccitiedhdiiodd--rne-t-eheeriocryrrnyeytaohtitchhcnrir rudiauuclclloe ooaissdsscteeeei der eees sesstttteseeetrrerr r 3030 2211009291882209 82 496 333000 OxOaOlxixcaal ailcicc ia dac-ciedidr-ye-erthyrytrhtuhrlruoulsoleos seee se etsestrtee rr 11991229 2 OxaOlixcaalciicd a-ecriydt-herruyltohsreuelostseer ester 119922 408 GOlyGxGcGbaleOylGbluGbGbrlyixciGbutuyuclcclleeautytcy tyleenearelatyceccireinnencccecrecienei eiceier r redcdea i a i rieecse-ac cci-cesa1cts s ce iiaetsaatc dt,idreae3tecrccdi-yerc -rdri,iei- r4d1 t did-r1 hd--,-1-y,t31-r113r,t1u,,3hi,,,343,h3l4,r3,o-4y,,u4-,44ts4d-tlr---rtoe-ritttrihrtos rrhirieiiehxyhiyhhsh yydyedyyty-dredsdrd1dotrrorrr-ero oxooxborxxyxx uyxyy-yty-ye1--1---1n11-11--e----ester30 111111999199191222292299 2 22 480 GGbluyblbctyuGeeGbuctGGnGruetleliGeyentylclrlenycy yileceancyceecce sc ceee reeraetiier sirrdececsicirticr-c scteii aece adt raaearc rc -aycc rcii1c didtiidh,did--3d-r- 1- e-u, e,4e erl3errory-r,yyyts4tyrtthte-htihhhtrhrerrruruyuiusulhltlldooleooyorsrsssdoseeeerex oe eeeeyxsssss-ttytttee1eee-rrr-r1r - 221222212922122494244492 2 24 512 GGlylMycceaerlriiccic aa accciididd--g- eleyrrcyyotthlhircruu allocosisdee eeesssttteeerrr 122922244 Malic acid-glycolic acid ester 192 MGallyiMcGcealaycrliiiccdce -raagiccclyii dadcc-o-gi ldeilcy-r ycaetocrhyildritcuhe lrasouctsleioerds eees settseetrre r 2129214229 42 408 MMalailcic a accidid-g-glylyccoolilcic a acciidd e esstteerr 119922 Malic acid-glycolic acid ester 192 MMaliacl iacc aidci-dg-lgylcyocleicro al cid ester 210982 MalicMacaildic-g alycicde-rgollycerol 220088 496 MaMlMicaMa laliiacccl ii adacc c-aigidcdli--ydggc-llgoyyllccyioeccrle ioarcolc ali dc ieds etestre r 2109128290 28 MaMlMicaMMMalailcciaaaci llldai iicac-cch c iaaaydiccdcd-iii-gdrddgol---lyxghhycylyycyepddecryrrreooroorulxxol v yyli ppcyyarrcuuivvdiicec s aateccriidd eesstteerr 22222022220800008 8 436 MaMlMicaMa laliiacccl ii adacc c-aigidcdli--ydhgc-ylheydyrcrodeolrrx ooxyl yppyyruruvvicic a acciidd eesstteerr 2220220802 80 Malic acid-hydroxypyruvic acid ester 220 MaMlMicaMMalailcciaaci llda iiac-cc1c iaa,di3cdc-,ii-h4ddhy---yt11drd,i,r33hroo,y,4x4xd--yryttporrpiixyhhyyryyru-udd1vvrr-ioobiccxxu ayytaec--cn11iide-d-bb eeeuussstttteeteeennrrree 222222202000 508 ester 220 www.a22 t m o s -cMhMeaMeesMelsMMtmaisMeeetacletasMersilaae -rtc tialsalleprec it iilacc erarcci hlc a iric adaac cyiac cc-disacdihii-.dcidd-n1ydi-1--d,d-1eh13,1-3r,t,y1,3,3o/,43d,41,,3x-,4r4-44t,oy--t4r-/xtrtpi-tr1rihrytihyiri3hhyphiryhy6dyuyyddydr8rvdroudrro1rioovrxcox/oxxi yx2yacxyy-y0- cy-1a-1-1i1-11c-d-1-b4i--bb -dbbue/buu uusteuttetettseteeenentnnernneee eree At22m2222222222020o00222 0 s 000 . Chem.Phys.,14,13681–13704,2014 2 2 Maleisct earc id-1,3,4-trihydroxy-1-butene 2 ester 220 22 2 2 31 31 31 3311 3311 31 31 13690 M.Jaouietal.:Atmosphericoxidationof1,3-butadiene Glycolic acid BSTFOxalic acid A derivativesGlycerol Glyceric acid 1,3,4-Trihydroxy-1-butene Erythrose Threitol (D, L,DL) Malic acid Meso-erythritol Threonic acid Erythreonic acid L-Tartaric acid PFBdHerAiv +at iBvSesT FA Glycolaldehyde Glyoxylic acid Glyceraldehyde Ketomalonic acid Glyoxal Ketopinic acid Hydroxy-pyruvaldehyde 2,4-Dihydro-1,3-butanedione 2 Figure1.TotalionchromatogrFaigmusre o1f. Toortgala inoinc cherxotmraactotgsrafmros mof oarngainrirca edxitaratcetds f1ro,m3- abnu itraraddiieanteed/ N1,3O-bxu/taadiriemne/iNxtOuxr/aeira sBSTFA(top)andPFBHA+ BSTFA(bottom)derivative4s . mixture as BSTFA (top) and PFBHA + BSTFA (bottom) derivatives. 6 density of 1.2±0.05 was obtained. Organic carbon and or- Aglycericacid(GAor2,3-dihydroxypropanoicacid)peak ganic aerosol yields and organic mass to organic carbon ra- eluted at 18.92min was one of the largest peaks detected tio(OM/OC)weredeterminedforexperimentsinwhichthe 44 in the chromatogram in Fig. 1 (top). The GA mass spec- chamberwasoperatedinadynamicmode(Table4).Uncer- trum (Fig. 2, bottom left) shows strong characteristic frag- taintiesintheyieldscomefromtheexperimentaluncertain- ments ion at m/z 323 [M+•+1], 189 [M+•−133], 205 tiesinSOAandthereacted13BDconcentrations.Thegravi- [M+•−117], and 307 [M+•−15], and adducts at M+•+1, metricyieldvaluesweresimilartothosemeasuredusingthe M+•+29, and M+•+41 that are consistent with the pres- SMPSdata.AverageSOAandSOCyieldsof0.025±0.011 enceofthree(-OH)groups,indicatingaBSTFA-derivatized and 0.017±0.013 were obtained, respectively. SOA yield molecularweight(Md)of322Da(allderivatizedandunder- values were in reasonable agreement with data in the liter- ivatized masses are Dalton (Da), but are not designated as ature(Satoetal.,2011;Sato,2008).Inaddition,theeffective suchhereafter). enthalpyofvaporization((cid:49)Heff)wasmeasuredforthedif- The BSTFA CI mass spectrum of L-threitol shows char- vap ferent experiments conducted in this study, and its average acteristic fragment ions at m/z 73, 395 [M+•−15], 321 valuewasfoundtobe−26.08±1.46kJmol−1. [M+•−89], and 305 [M+•−105], and an adduct at 411 [M+•+1]. These fragments and the adduct are consistent CharacterizationofSOAproducts with the presence of four OH groups and an MW of 410 for the derivatized compound and 122 for the underivatized compound.Thepresenceofapeakatm/z305[M+•−105]is SOAgeneratedfrom13BDoxidationwasdominatedbyoxy- consistentwithacompoundbearinganalcoholicOHgroup. genatedcompoundsinwhich13BDdoublebondswereoxi- ThismassspectrumisidenticaltotheonefromanL-threitol dized.ChromatogramsfromSOAsampleseitherinEIorCI standard(Fig.2).ThemassspectraofBSTFAderivativesof modesindicatedthepresenceofseverallargerpeaksfromei- ther BSTFA or PFBHA + BSTFA derivatizations. Figure 2 L-andDL-threitolstandards(Fig.2,topleft)areverysimilar (elutingatthesametime),andareonlyslightlydifferentfrom showsexamplesofCImassspectraasBSTFAderivativesfor themeso-threitolspectrum(Fig.2,topright);however,they someproductsdetectedandidentifiedintheaerosolphase. Atmos.Chem.Phys.,14,13681–13704,2014 www.atmos-chem-phys.net/14/13681/2014/
Description: