A. Baklanov Æ B. Grisogono Editors Atmospheric Boundary Layers Nature, Theory and Applications to Environmental Modelling and Security Introduction by A. Baklanov and B. Grisogono PreviouslypublishedinjournalBoundary-LayerMeteorology,Volume125,No.2 123 AlexanderBaklanov BrankoGrisigono DanishMeteorological Institute Departmentof Geophysics Copenhagen,Denmark University ofZagreb Zagreb, Croatia Based upon papers presented at a NATO Advanced Research Workshop held in Dubrovnik, Croatia, 18–22April, 2006. Coverillustration: ThanksareduetoS.S.ZilitinkevichandI.N.EsaufortheuseofFigure3,from ‘Similaritytheoryandcalculationofturbulentfluxesatthesurfaceforthestablystratifiedatmospheric boundarylayer’,p.43. LibraryofCongressControlNumber: ISBN-978-0-387-74318-9 e-ISBN 978-0-387-74321-9 Printedonacid-freepaper. (cid:1)2007SpringerScience+BusinessMedia,LLC Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC.,233SpringStreet,NewYork, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connectionwithanyformofinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. 9 8 7 6 5 4 3 2 1 springer.com Contents EDITORIAL Atmospheric boundary layers: nature, theory and applications to environ- mental modelling and security A. Baklanov · B. Grisogono . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ORIGINALPAPERS Some modern features of boundary-layer meteorology: a birthday tribute for Sergej Zilitinkevich G.D. Djolov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: steady-state, homogeneous regimes S.S. Zilitinkevich · T. Elperin · N. Kleeorin · I. Rogachevskii . . . . . . . . . . . . . . . . . . . . . . . . 11 Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer S.S. Zilitinkevich · I.N. Esau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Application of a large-eddy simulation database to optimisation of first-order closures for neutral and stably stratified boundary layers I.N. Esau · Ø. Byrkjedal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 The effect of mountainous topography on moisture exchange between the “surface” and the free atmosphere A.P. Weigel · F.K. Chow · M.W. Rotach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 The influence of nonstationarity on the turbulent flux—gradient relationship for stable stratification L. Mahrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Chemical perturbations in the planetary boundary layer and their relevance for chemistry transport modelling A. Ebel · M. Memmesheimer · H.J. Jakobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Theoretical considerations of meandering winds in simplified conditions A.G.O. Goulart · G.A. Degrazia · O.C. Acevedo · D. Anfossi . . . . . . . . . . . . . . . . . . . . . . . . 123 Aerodynamic roughness of the sea surface at high winds V.N. Kudryavtsev · V.K. Makin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Modelling dust distributions in the atmospheric boundary layer on Mars P.A. Taylor · P.-Y. Li · D.V. Michelangeli · J. Pathak · W. Weng . . . . . . . . . . . . . . . . . . . . . . 149 123 On the turbulent Prandtl number in the stable atmospheric boundary layer A.A. Grachev · E.L. Andreas · C.W. Fairall · P.S. Guest · P.O.G. Persson . . . . . . . . . . . . . . 173 Micrometeorological observations of a microburst in southern Finland L. Järvi · A.-J. Punkka · D.M. Schultz · T. Petäjä · H. Hohti · J. Rinne · T. Pohja · M. Kulmala · P. Hari · T. Vesala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Role of land-surface temperature feedback on model performance for the stable boundary layer A.A.M. Holtslag · G.J. Steeneveld · B.J.H. van de Wiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Katabatic flow with Coriolis effect and gradually varying eddy diffusivity I. Kavc(cid:1)ic(cid:1)· B. Grisogono . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Parameterisation of the planetary boundary layer for diagnostic wind models M. Burlando · E. Georgieva · C.F. Ratto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 123 Dedicated to Sergej S. Zilitinkevich on the occasion of his 70th birthday (cid:1)belokouroffalexander2007 Professor Sergej S. Zilitinkevich Atmospheric boundary layers: nature, theory and applications to environmental modelling and security AlexanderBaklanov · BrankoGrisogono This special issue presents a set of peer-reviewed papers from the NATO Advanced ResearchWorkshop(ARW)“AtmosphericBoundaryLayers:ModellingandApplicationsto EnvironmentalSecurity”,heldinDubrovnik,Croatia,18–22April2006;57researchersfrom 21countriesand4continentsparticipated(seetheARWweb-sitehttp://pbl-nato-arw.dmi.dk). TheprincipalgoalsoftheARWwere (cid:127) tosummariseandassesscurrentknowledgeonplanetaryboundary-layer(PBL)physics andparameterization, (cid:127) topromotetheexchangeofideasandknowledgebetweenphysicists,meteorologists,and environmentalmodellers, (cid:127) tosetacourseforimprovingPBLparameterisationsinclimate,numericalweatherpre- diction,air-quality,andemergencypreparednessmodels. ApleasantreasontoarrangethiseventinApril2006wasthe70thbirthdayofProfessor SergejZilitinkevich(bornon13April1936inSt.Petersburg,Russia).Amostappropriate tribute to him is the fact that a major part of the presentations at this ARW are based on orlinkedwithhisfundamentalworks.HisscientificbiographicalnotebyGeorgeDjolovis includedinthisissue.Heisinperfectform,sprinklingwithnewideas,andveryproductive scientifically. The scientific organisation of the ARW was performed by the Organising Commit- tee consisting of the NATO-country ARW director Alexander Baklanov (Meteorological Research Division, Danish Meteorological Institute, Copenhagen, Denmark); the Partner- countryARWdirectorBrankoGrisogono(DepartmentofGeophysics,UniversityofZagreb, Croatia);AdolfEbel(PhenishInstituteforEnvironmentalResearch,UniversityofCologne, Germany); Sylvain M. Joffre (Finnish Meteorological Institute) and Sergej Zilitinkevich (DivisionofAtmosphericSciences,UniversityofHelsinki,Finland)—withvaluablecontri- B A.Baklanov( ) MeteorologicalResearch,DanishMeteorologicalInstitute,Lyngbyvej100,Copenhagen,2100Denmark e-mail: [email protected] B.Grisogono GeophysicalInstitute,FacultyofScience,UniversityofZagreb,Horvatovacbb,10000Zagreb,Croatia Atmospheric Boundary Layers.A. Baklanov & B. Grisogono (eds.), 1 doi: 10.1007/978-0-387-74321-9_1, © Springer Science+Business Media B.V. 2007 22 AA.. BBaakkllaannoovv,, BB.. GGrriissooggoonnoo butionsfromthelocalorganisers:IvaKavcicandIvaGrisogono(DepartmentofGeophysics, UniversityofZagreb). Theprogrammeincludedthreeintroductorytalks,ninekeylectures,and27regularpre- sentationsdividedintoseveralthematicsessions.Itisonlynaturalthatthisissuedoesnot cover all presentations; some of them were based on already published, submitted or still uncompletedpapers. Besides presentations, the programme included three general discussions: “Stability dependenceoftheturbulentPrandtlnumberandthecriticalRichardsonnumberproblem”, “Turbulenceclosureproblem”,“TowardsimprovementofPBLschemesinoperationalmod- els”;andspecificdiscussionsinworkinggroups:(WG1)Boundary-layerphysics(L.Mahrt); (WG2)Turbulenceclosure(S.S.Zilitinkevich);(WG3)Complexandmesoscaleboundary- layer flows (P.A. Taylor); (WG4) Air-sea-ice interaction (S.E. Larsen); (WG5) Air flows withinandaboveurbanandvegetationcanopies(R.Bornstein);(WG6)PBLsinoperational models(M.W.Rotach);(WG7)Environmentalsecurityissuesanddemandsfromendusers (H.J.S. Fernando). The WG chairmen (see their names in brackets) have summarised and forwardedtoustheconclusionsandrecommendationsoftheirgroups.Belowwebrieflyskim throughworking-groupandgeneralinert-groupconclusions. WG1recommended(i)creationofacatalogueofthemoreextensivePBLdatasets,(ii) analysingdifferentsiteswiththesameanalysismethod,and(iii)maintenanceofarespon- sivedata-basecentrethatcanaccommodatecontinualupgradesofdatasets.Moreattention should be concentrated on spatial averaging of turbulent fluxes. Tower measurements can provide spatial averages, such as over a grid area, only with weak heterogeneity and the precariousassumptionofTaylor’shypothesis.Mostpracticalapplicationsinvolvecomplex surfaces, which require more attention. The degree of failure of existing similarity theory overcommoncomplexsurfacesneedstobedeterminedtoestablishthelikelymagnitudeof errors.Evenmodestimprovementsoftheformulationoftheflux-gradientrelationshipsover heterogeneoussurfaceswouldbeofconsiderablepracticaluse. WG2emphasisedthattraditionaltreatmentoftheturbulenceenergeticsusingsolelythe turbulentkineticenergy(TKE)budgetequationisinsufficientandcausesdifficultiesinoper- ationalturbulenceclosuremodels.TheTKEequationincombinationwiththedown-gradi- entformulationfortheturbulentfluxesandKolmogorov’sclosurehypothesisfortheeddy exchange coefficients leads to unrealistic degeneration of turbulence at Richardson num- bers,Ri,exceedingsomecriticalvalue,Ri .ToRi ,Ri-dependent“correctioncoefficients” c c are introduced in the above formulation without physical explanation of the maintenance ofturbulenceinstronglystablestratification.AsdemonstratedattheARWtheabovediffi- cultiesarecausedbyoverlookingtheturbulentpotentialenergy(TPE)proportionaltothe meansquaredtemperaturefluctuations.TogetherTKEandTPEcomprisetheturbulenttotal energy(TTE),whosebudgetequationdoesnotincludetheverticalfluxofbuoyancyandhas theformofaconservationequationsecuringpositiveTTEinanystratification.Theconcepts ofTPEandTTEeliminateRi fromtheturbulenceclosureproblemandopenaconstructive c way to create a hierarchy of energetically consistent closure schemes for operational use. ThenatureoforganisedstructuresintheconvectivePBL,namelycellsandrollsintheshear- freeandshearedregimes,respectively,remainnotfullyunderstood.Thesurfaceheat/mass transferlawsfortheshear-freeconvectionareobtained,buttoextendthetheorytosheared convectionandtoverticaltransportswithintheconvectivezone,furtherobservationaland numericalsimulationstudiesareneeded. WG3identifiedthefollowingmesoscaleboundary-layerflowsthatstronglyaffectregional climate, weather and air quality: internal boundary layers caused by the roughness and/or thermalheterogeneity;flowsovertopography,suchasslopewinds;thermallydrivenfeatures: Atmospheric boundary layers 3 surface-inducedconvectionandthunderstorms,seaandlakebreezes,mountain-valleywinds, urbanandotherheatislands,convectivecirculationsoverleadsandpolynias;mechanically drivenflows:orographicgravitywaves,downslopewindstorms,retardationoffrontalpas- sages by orography or roughness; and features combing thermal and mechanical driving mechanisms,suchasbora,chinookandfoehn.Herethetraditionalcomputationaltechniques areReynolds-averagedNavier–Stokesequation(RANS)modelswithvaryinglevelsofclo- sure.TTEclosuresopennewopportunitiestoimproveRANSmodels,firstofall,addressing airqualityissues.Large-eddysimulation(LES)hasjuststartedtoaddressidealisedcomplex- terrainflows(e.g.,Arcticleads,simplycomposedslopes,urbancanopies)utilisingperiodic lateralboundaryconditions.Inviewoftheincreasingpowerofsupercomputersthistechnique willbecomesuitableforoperationalmodellingintheverynearfuture. WG4focusedonthemarineatmosphericplanetaryboundarylayer(MPBL).Thesmaller roughness and larger heat capacity of the ocean result in more organised convective flow patterns,suchascloudstreets.Parameterizationofthesurfaceturbulentfluxesofmomen- tum,heatandwatervapouroverthesearemainsthekeyproblembecauseofdifficultiesin obtaininghighqualitydatainstrongwinds.Severalstudiesrevealeddecreasingoftheeffec- tiveroughnesslengthinverystrongwindscausedbytheinputoftheseasprayintothelower surfacelayer.Constrainedwaters,coastalareasandlakesrepresentanevenmorecomplex problemrequiringknowledgeofthewindfetchandthebasindepth.Modellingofthegasand particleexchangebetweentheatmosphereandoceanstillsuffersfrommanyuncertaintiesof boththeoreticalandexperimentalnature.Forgases,animportantuncertaintyfollowsfrom theempiricalnatureofthesurfaceexchangecoefficientallowingnosimplerulestoaccount fornon-stationaryandheterogeneousfeaturesoftenfoundinaqueousconcentrationpatterns andwindspeeds.Themixedice-seasurfaceisoftenhighlyheterogeneouswithrespectto theheatflux,duetotheoften-extremedifferenceintemperaturebetweentheicesurfaceand underlyingwaters.Alsothedragmaychangestronglyduetoridgedbordersoftheicefloes. A quite successful effort has been made to understand and model the flow and fluxes for individualwater openings,andalsofromice-coveredsurfaces.However,aggregationinto averagesurfacefluxesremainsstronglyuncertain.Passingcloudschangetheradiationheat fluxandthusconstituteanimportantnon-stationaryeffectontheMPBL.Thestrongwind MPBLtraditionallyconsideredasasimpleneutrallystratifiedboundarylayerexhibitsnovel features and, as recognised recently, should be treated as “conventionally neutral” (near- neutralclosetothesurfacebutstronglyaffectedbythefree-flowstabilityandstablystrati- fiedinitsupperportion). WG5emphasisedthekeyroleoftheurbanboundarylayerinairqualityproblems.Urban features essentially influence atmospheric flow and microclimate, strongly enhance atmo- sphericturbulence,andmodifyturbulenttransports,dispersionanddepositionofatmospheric pollutants. Considerably increased resolution in numerical weather prediction models has allowedformorerealisticallyreproducingurbanairflowsandairpollutionprocesses.This hastriggerednewinterestinmodellingandinvestigatingexperimentallyspecificprocesses essential for urban areas. Recent developments performed within the EU-funded project FUMAPEXonintegratedsystemsforforecastingurbanmeteorologyandairpollutionand otherrelevantstudiesshowedmanyopportunitiesin“urbanisation”ofweatherprediction, airpollutionandemergencypreparednessmodels. WG6andWG3agreedthathigh-resolutionmesoscaleRANSmodelsandLESarecom- plementaryprovidingbasicinformationonfine-scalefeaturesofairflowovercomplexterrain. Thelatterarenotresolvedinlargerscaleclimateandweatherpredictionmodelsandareto be parameterized through appropriate spatial averaging of turbulent fluxes (flux aggrega- tion).Thisappliesinparticularto“hydrologicalheterogeneity”associatedwithareaswith 4 AA.. BBaakkllaannoovv,, BB.. GGrriissooggoonnoo manysmalllakes.Currently-usedflux-profilerelationshipsdeterminingthelowerboundary conditions in both mesoscale and larger scale models need to be refined. The background Monin–Obukhov similarity theory is not applicable over complex terrain (see WG1) and doesnotrealisticallyreproducestronglystableandstronglyunstablestratificationregimes. Recentlyithasbeengeneralisedaccountingforthenon-localeffectsofthefree-flowstabil- ityinstablestratificationandlarge-scale,organisededdiesinshear-freeconvection.Further workisneededtoextendsurface-layertheorytoshearedconvectionandalsotocomplexand slopingterrain. WG7consideredenvironmentalsecurityissuesanddemandsfromendusers.Withgrow- ingspectraofchemical,biologicalandradiological(CBR)terrorism,ithasbecomeincreas- inglynecessarytoprotectourecosystemsagainstdeleteriousactivitiesofhumans.Therapid rise of population in cities has created concentrated human centres that are vulnerable to extensivedestructionthroughterrorismorbynaturalcausessuchashurricanes,asevidenced withincreasingfrequencyinrecentdecades.Increaseofairpollutionisanotherissuethatis closelyrelatedtothequalityoflife.Giventhatthebulkoflivingentitiesareembeddedinthe PBL,itisopportunetodiscusstherolethatboundary-layermeteorologyplaysinsecuring ourenvironment.OneofthekeyissuesisthepredictionofthepathwaysofCBRreleases. Firstandforemost,suitablesensorsareneededforthedetectionoftoxins,andinthepost- 9/11erasuchsensortechnologiesarerapidlyadvancing.Whatfollowsareinthearenaof PBLmodelling:optimalplacementofsensoranddesignofsensornetworks,environmental cyber-infrastructure, prediction of transport, diffusion and distribution of contaminants in thePBL,especiallyfastforecastmodels,monitoringofcontaminantpaths,includingsensor modelfusionwork,longrangetransportanddilution,indoorairquality(airseepagethrough building accessories), environmental remediation, informing the authorities and providing helpinemergencyresponse. We hope that the principal goals of the ARW will be achieved and this issue will help readerstoassessthepotentialofrecentachievementsandnovelwaysinPBLphysicsand itsapplications.ItwastheunanimousopinionofallparticipantsthattheARWhasindeed made a step towards these goals, and that similar meetings, say, once in 2–3years would stronglyfacilitatefurtherprogressinboundary-layermeteorologyandoperationalenviron- mentalmodelling,includingthesecurityissues. Acknowledgements ThisARWhasbeensponsoredbytheNATOProgrammeNo.982062“Securitythrough Science”.AdditionalsupportshavecomefromCroatianMeteorologicalandHydrologicalService(CMHS), DanishMeteorologicalInstitute(DMI),FinnishMeteorologicalInstitute(FMI),theEUMarieCurieChairPro- jectMEXC-CT-2003–509742“Theory,ModellingandRoleinEarthSystems”andtheNORDPLUSNEIGH- BOURProject177039/VII.WethanktheNATOAdministration,theCMHSDirectorGeneralIvanCˇacˇic´ andtheFMIDirectorGeneralPekkaPlathanformakingthismeetingpossible,productiveandavailableto manyparticipants.WealsothanktheworkinggroupleadersLarryMahrt,SergejZilitinkevich,PeterTaylor, SørenLarsen,RobertBornstein,MathiasRotachandJoeFernandoforprovidinguswithrecommendations summarisedherein. 9July2007