ebook img

Atmospheric Boundary Layers: Nature, Theory and Applications to Environmental Modelling and Security PDF

239 Pages·2007·7.368 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Atmospheric Boundary Layers: Nature, Theory and Applications to Environmental Modelling and Security

A. Baklanov Æ B. Grisogono Editors Atmospheric Boundary Layers Nature, Theory and Applications to Environmental Modelling and Security Introduction by A. Baklanov and B. Grisogono PreviouslypublishedinjournalBoundary-LayerMeteorology,Volume125,No.2 123 AlexanderBaklanov BrankoGrisigono DanishMeteorological Institute Departmentof Geophysics Copenhagen,Denmark University ofZagreb Zagreb, Croatia Based upon papers presented at a NATO Advanced Research Workshop held in Dubrovnik, Croatia, 18–22April, 2006. Coverillustration: ThanksareduetoS.S.ZilitinkevichandI.N.EsaufortheuseofFigure3,from ‘Similaritytheoryandcalculationofturbulentfluxesatthesurfaceforthestablystratifiedatmospheric boundarylayer’,p.43. LibraryofCongressControlNumber: ISBN-978-0-387-74318-9 e-ISBN 978-0-387-74321-9 Printedonacid-freepaper. (cid:1)2007SpringerScience+BusinessMedia,LLC Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC.,233SpringStreet,NewYork, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connectionwithanyformofinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. 9 8 7 6 5 4 3 2 1 springer.com Contents EDITORIAL Atmospheric boundary layers: nature, theory and applications to environ- mental modelling and security A. Baklanov · B. Grisogono . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ORIGINALPAPERS Some modern features of boundary-layer meteorology: a birthday tribute for Sergej Zilitinkevich G.D. Djolov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: steady-state, homogeneous regimes S.S. Zilitinkevich · T. Elperin · N. Kleeorin · I. Rogachevskii . . . . . . . . . . . . . . . . . . . . . . . . 11 Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer S.S. Zilitinkevich · I.N. Esau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Application of a large-eddy simulation database to optimisation of first-order closures for neutral and stably stratified boundary layers I.N. Esau · Ø. Byrkjedal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 The effect of mountainous topography on moisture exchange between the “surface” and the free atmosphere A.P. Weigel · F.K. Chow · M.W. Rotach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 The influence of nonstationarity on the turbulent flux—gradient relationship for stable stratification L. Mahrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Chemical perturbations in the planetary boundary layer and their relevance for chemistry transport modelling A. Ebel · M. Memmesheimer · H.J. Jakobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Theoretical considerations of meandering winds in simplified conditions A.G.O. Goulart · G.A. Degrazia · O.C. Acevedo · D. Anfossi . . . . . . . . . . . . . . . . . . . . . . . . 123 Aerodynamic roughness of the sea surface at high winds V.N. Kudryavtsev · V.K. Makin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Modelling dust distributions in the atmospheric boundary layer on Mars P.A. Taylor · P.-Y. Li · D.V. Michelangeli · J. Pathak · W. Weng . . . . . . . . . . . . . . . . . . . . . . 149 123 On the turbulent Prandtl number in the stable atmospheric boundary layer A.A. Grachev · E.L. Andreas · C.W. Fairall · P.S. Guest · P.O.G. Persson . . . . . . . . . . . . . . 173 Micrometeorological observations of a microburst in southern Finland L. Järvi · A.-J. Punkka · D.M. Schultz · T. Petäjä · H. Hohti · J. Rinne · T. Pohja · M. Kulmala · P. Hari · T. Vesala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Role of land-surface temperature feedback on model performance for the stable boundary layer A.A.M. Holtslag · G.J. Steeneveld · B.J.H. van de Wiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Katabatic flow with Coriolis effect and gradually varying eddy diffusivity I. Kavc(cid:1)ic(cid:1)· B. Grisogono . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Parameterisation of the planetary boundary layer for diagnostic wind models M. Burlando · E. Georgieva · C.F. Ratto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 123 Dedicated to Sergej S. Zilitinkevich on the occasion of his 70th birthday (cid:1)belokouroffalexander2007 Professor Sergej S. Zilitinkevich Atmospheric boundary layers: nature, theory and applications to environmental modelling and security AlexanderBaklanov · BrankoGrisogono This special issue presents a set of peer-reviewed papers from the NATO Advanced ResearchWorkshop(ARW)“AtmosphericBoundaryLayers:ModellingandApplicationsto EnvironmentalSecurity”,heldinDubrovnik,Croatia,18–22April2006;57researchersfrom 21countriesand4continentsparticipated(seetheARWweb-sitehttp://pbl-nato-arw.dmi.dk). TheprincipalgoalsoftheARWwere (cid:127) tosummariseandassesscurrentknowledgeonplanetaryboundary-layer(PBL)physics andparameterization, (cid:127) topromotetheexchangeofideasandknowledgebetweenphysicists,meteorologists,and environmentalmodellers, (cid:127) tosetacourseforimprovingPBLparameterisationsinclimate,numericalweatherpre- diction,air-quality,andemergencypreparednessmodels. ApleasantreasontoarrangethiseventinApril2006wasthe70thbirthdayofProfessor SergejZilitinkevich(bornon13April1936inSt.Petersburg,Russia).Amostappropriate tribute to him is the fact that a major part of the presentations at this ARW are based on orlinkedwithhisfundamentalworks.HisscientificbiographicalnotebyGeorgeDjolovis includedinthisissue.Heisinperfectform,sprinklingwithnewideas,andveryproductive scientifically. The scientific organisation of the ARW was performed by the Organising Commit- tee consisting of the NATO-country ARW director Alexander Baklanov (Meteorological Research Division, Danish Meteorological Institute, Copenhagen, Denmark); the Partner- countryARWdirectorBrankoGrisogono(DepartmentofGeophysics,UniversityofZagreb, Croatia);AdolfEbel(PhenishInstituteforEnvironmentalResearch,UniversityofCologne, Germany); Sylvain M. Joffre (Finnish Meteorological Institute) and Sergej Zilitinkevich (DivisionofAtmosphericSciences,UniversityofHelsinki,Finland)—withvaluablecontri- B A.Baklanov( ) MeteorologicalResearch,DanishMeteorologicalInstitute,Lyngbyvej100,Copenhagen,2100Denmark e-mail: [email protected] B.Grisogono GeophysicalInstitute,FacultyofScience,UniversityofZagreb,Horvatovacbb,10000Zagreb,Croatia Atmospheric Boundary Layers.A. Baklanov & B. Grisogono (eds.), 1 doi: 10.1007/978-0-387-74321-9_1, © Springer Science+Business Media B.V. 2007 22 AA.. BBaakkllaannoovv,, BB.. GGrriissooggoonnoo butionsfromthelocalorganisers:IvaKavcicandIvaGrisogono(DepartmentofGeophysics, UniversityofZagreb). Theprogrammeincludedthreeintroductorytalks,ninekeylectures,and27regularpre- sentationsdividedintoseveralthematicsessions.Itisonlynaturalthatthisissuedoesnot cover all presentations; some of them were based on already published, submitted or still uncompletedpapers. Besides presentations, the programme included three general discussions: “Stability dependenceoftheturbulentPrandtlnumberandthecriticalRichardsonnumberproblem”, “Turbulenceclosureproblem”,“TowardsimprovementofPBLschemesinoperationalmod- els”;andspecificdiscussionsinworkinggroups:(WG1)Boundary-layerphysics(L.Mahrt); (WG2)Turbulenceclosure(S.S.Zilitinkevich);(WG3)Complexandmesoscaleboundary- layer flows (P.A. Taylor); (WG4) Air-sea-ice interaction (S.E. Larsen); (WG5) Air flows withinandaboveurbanandvegetationcanopies(R.Bornstein);(WG6)PBLsinoperational models(M.W.Rotach);(WG7)Environmentalsecurityissuesanddemandsfromendusers (H.J.S. Fernando). The WG chairmen (see their names in brackets) have summarised and forwardedtoustheconclusionsandrecommendationsoftheirgroups.Belowwebrieflyskim throughworking-groupandgeneralinert-groupconclusions. WG1recommended(i)creationofacatalogueofthemoreextensivePBLdatasets,(ii) analysingdifferentsiteswiththesameanalysismethod,and(iii)maintenanceofarespon- sivedata-basecentrethatcanaccommodatecontinualupgradesofdatasets.Moreattention should be concentrated on spatial averaging of turbulent fluxes. Tower measurements can provide spatial averages, such as over a grid area, only with weak heterogeneity and the precariousassumptionofTaylor’shypothesis.Mostpracticalapplicationsinvolvecomplex surfaces, which require more attention. The degree of failure of existing similarity theory overcommoncomplexsurfacesneedstobedeterminedtoestablishthelikelymagnitudeof errors.Evenmodestimprovementsoftheformulationoftheflux-gradientrelationshipsover heterogeneoussurfaceswouldbeofconsiderablepracticaluse. WG2emphasisedthattraditionaltreatmentoftheturbulenceenergeticsusingsolelythe turbulentkineticenergy(TKE)budgetequationisinsufficientandcausesdifficultiesinoper- ationalturbulenceclosuremodels.TheTKEequationincombinationwiththedown-gradi- entformulationfortheturbulentfluxesandKolmogorov’sclosurehypothesisfortheeddy exchange coefficients leads to unrealistic degeneration of turbulence at Richardson num- bers,Ri,exceedingsomecriticalvalue,Ri .ToRi ,Ri-dependent“correctioncoefficients” c c are introduced in the above formulation without physical explanation of the maintenance ofturbulenceinstronglystablestratification.AsdemonstratedattheARWtheabovediffi- cultiesarecausedbyoverlookingtheturbulentpotentialenergy(TPE)proportionaltothe meansquaredtemperaturefluctuations.TogetherTKEandTPEcomprisetheturbulenttotal energy(TTE),whosebudgetequationdoesnotincludetheverticalfluxofbuoyancyandhas theformofaconservationequationsecuringpositiveTTEinanystratification.Theconcepts ofTPEandTTEeliminateRi fromtheturbulenceclosureproblemandopenaconstructive c way to create a hierarchy of energetically consistent closure schemes for operational use. ThenatureoforganisedstructuresintheconvectivePBL,namelycellsandrollsintheshear- freeandshearedregimes,respectively,remainnotfullyunderstood.Thesurfaceheat/mass transferlawsfortheshear-freeconvectionareobtained,buttoextendthetheorytosheared convectionandtoverticaltransportswithintheconvectivezone,furtherobservationaland numericalsimulationstudiesareneeded. WG3identifiedthefollowingmesoscaleboundary-layerflowsthatstronglyaffectregional climate, weather and air quality: internal boundary layers caused by the roughness and/or thermalheterogeneity;flowsovertopography,suchasslopewinds;thermallydrivenfeatures: Atmospheric boundary layers 3 surface-inducedconvectionandthunderstorms,seaandlakebreezes,mountain-valleywinds, urbanandotherheatislands,convectivecirculationsoverleadsandpolynias;mechanically drivenflows:orographicgravitywaves,downslopewindstorms,retardationoffrontalpas- sages by orography or roughness; and features combing thermal and mechanical driving mechanisms,suchasbora,chinookandfoehn.Herethetraditionalcomputationaltechniques areReynolds-averagedNavier–Stokesequation(RANS)modelswithvaryinglevelsofclo- sure.TTEclosuresopennewopportunitiestoimproveRANSmodels,firstofall,addressing airqualityissues.Large-eddysimulation(LES)hasjuststartedtoaddressidealisedcomplex- terrainflows(e.g.,Arcticleads,simplycomposedslopes,urbancanopies)utilisingperiodic lateralboundaryconditions.Inviewoftheincreasingpowerofsupercomputersthistechnique willbecomesuitableforoperationalmodellingintheverynearfuture. WG4focusedonthemarineatmosphericplanetaryboundarylayer(MPBL).Thesmaller roughness and larger heat capacity of the ocean result in more organised convective flow patterns,suchascloudstreets.Parameterizationofthesurfaceturbulentfluxesofmomen- tum,heatandwatervapouroverthesearemainsthekeyproblembecauseofdifficultiesin obtaininghighqualitydatainstrongwinds.Severalstudiesrevealeddecreasingoftheeffec- tiveroughnesslengthinverystrongwindscausedbytheinputoftheseasprayintothelower surfacelayer.Constrainedwaters,coastalareasandlakesrepresentanevenmorecomplex problemrequiringknowledgeofthewindfetchandthebasindepth.Modellingofthegasand particleexchangebetweentheatmosphereandoceanstillsuffersfrommanyuncertaintiesof boththeoreticalandexperimentalnature.Forgases,animportantuncertaintyfollowsfrom theempiricalnatureofthesurfaceexchangecoefficientallowingnosimplerulestoaccount fornon-stationaryandheterogeneousfeaturesoftenfoundinaqueousconcentrationpatterns andwindspeeds.Themixedice-seasurfaceisoftenhighlyheterogeneouswithrespectto theheatflux,duetotheoften-extremedifferenceintemperaturebetweentheicesurfaceand underlyingwaters.Alsothedragmaychangestronglyduetoridgedbordersoftheicefloes. A quite successful effort has been made to understand and model the flow and fluxes for individualwater openings,andalsofromice-coveredsurfaces.However,aggregationinto averagesurfacefluxesremainsstronglyuncertain.Passingcloudschangetheradiationheat fluxandthusconstituteanimportantnon-stationaryeffectontheMPBL.Thestrongwind MPBLtraditionallyconsideredasasimpleneutrallystratifiedboundarylayerexhibitsnovel features and, as recognised recently, should be treated as “conventionally neutral” (near- neutralclosetothesurfacebutstronglyaffectedbythefree-flowstabilityandstablystrati- fiedinitsupperportion). WG5emphasisedthekeyroleoftheurbanboundarylayerinairqualityproblems.Urban features essentially influence atmospheric flow and microclimate, strongly enhance atmo- sphericturbulence,andmodifyturbulenttransports,dispersionanddepositionofatmospheric pollutants. Considerably increased resolution in numerical weather prediction models has allowedformorerealisticallyreproducingurbanairflowsandairpollutionprocesses.This hastriggerednewinterestinmodellingandinvestigatingexperimentallyspecificprocesses essential for urban areas. Recent developments performed within the EU-funded project FUMAPEXonintegratedsystemsforforecastingurbanmeteorologyandairpollutionand otherrelevantstudiesshowedmanyopportunitiesin“urbanisation”ofweatherprediction, airpollutionandemergencypreparednessmodels. WG6andWG3agreedthathigh-resolutionmesoscaleRANSmodelsandLESarecom- plementaryprovidingbasicinformationonfine-scalefeaturesofairflowovercomplexterrain. Thelatterarenotresolvedinlargerscaleclimateandweatherpredictionmodelsandareto be parameterized through appropriate spatial averaging of turbulent fluxes (flux aggrega- tion).Thisappliesinparticularto“hydrologicalheterogeneity”associatedwithareaswith 4 AA.. BBaakkllaannoovv,, BB.. GGrriissooggoonnoo manysmalllakes.Currently-usedflux-profilerelationshipsdeterminingthelowerboundary conditions in both mesoscale and larger scale models need to be refined. The background Monin–Obukhov similarity theory is not applicable over complex terrain (see WG1) and doesnotrealisticallyreproducestronglystableandstronglyunstablestratificationregimes. Recentlyithasbeengeneralisedaccountingforthenon-localeffectsofthefree-flowstabil- ityinstablestratificationandlarge-scale,organisededdiesinshear-freeconvection.Further workisneededtoextendsurface-layertheorytoshearedconvectionandalsotocomplexand slopingterrain. WG7consideredenvironmentalsecurityissuesanddemandsfromendusers.Withgrow- ingspectraofchemical,biologicalandradiological(CBR)terrorism,ithasbecomeincreas- inglynecessarytoprotectourecosystemsagainstdeleteriousactivitiesofhumans.Therapid rise of population in cities has created concentrated human centres that are vulnerable to extensivedestructionthroughterrorismorbynaturalcausessuchashurricanes,asevidenced withincreasingfrequencyinrecentdecades.Increaseofairpollutionisanotherissuethatis closelyrelatedtothequalityoflife.Giventhatthebulkoflivingentitiesareembeddedinthe PBL,itisopportunetodiscusstherolethatboundary-layermeteorologyplaysinsecuring ourenvironment.OneofthekeyissuesisthepredictionofthepathwaysofCBRreleases. Firstandforemost,suitablesensorsareneededforthedetectionoftoxins,andinthepost- 9/11erasuchsensortechnologiesarerapidlyadvancing.Whatfollowsareinthearenaof PBLmodelling:optimalplacementofsensoranddesignofsensornetworks,environmental cyber-infrastructure, prediction of transport, diffusion and distribution of contaminants in thePBL,especiallyfastforecastmodels,monitoringofcontaminantpaths,includingsensor modelfusionwork,longrangetransportanddilution,indoorairquality(airseepagethrough building accessories), environmental remediation, informing the authorities and providing helpinemergencyresponse. We hope that the principal goals of the ARW will be achieved and this issue will help readerstoassessthepotentialofrecentachievementsandnovelwaysinPBLphysicsand itsapplications.ItwastheunanimousopinionofallparticipantsthattheARWhasindeed made a step towards these goals, and that similar meetings, say, once in 2–3years would stronglyfacilitatefurtherprogressinboundary-layermeteorologyandoperationalenviron- mentalmodelling,includingthesecurityissues. Acknowledgements ThisARWhasbeensponsoredbytheNATOProgrammeNo.982062“Securitythrough Science”.AdditionalsupportshavecomefromCroatianMeteorologicalandHydrologicalService(CMHS), DanishMeteorologicalInstitute(DMI),FinnishMeteorologicalInstitute(FMI),theEUMarieCurieChairPro- jectMEXC-CT-2003–509742“Theory,ModellingandRoleinEarthSystems”andtheNORDPLUSNEIGH- BOURProject177039/VII.WethanktheNATOAdministration,theCMHSDirectorGeneralIvanCˇacˇic´ andtheFMIDirectorGeneralPekkaPlathanformakingthismeetingpossible,productiveandavailableto manyparticipants.WealsothanktheworkinggroupleadersLarryMahrt,SergejZilitinkevich,PeterTaylor, SørenLarsen,RobertBornstein,MathiasRotachandJoeFernandoforprovidinguswithrecommendations summarisedherein. 9July2007

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.