ebook img

Atlas of Stem Anatomy in Herbs, Shrubs and Trees: Volume 2 PDF

414 Pages·2013·71.123 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Atlas of Stem Anatomy in Herbs, Shrubs and Trees: Volume 2

F. H. Schweingruber A. Börner E.-D. Schulze Atlas of Stem Anatomy in Herbs, Shrubs and Trees Volume I1 F. H. Schweingruber A. Börner E.-D. Schulze Stem Anatomy Atlas of in Herbs, Shrubs and Trees Volume I1 With contributions by B. Kirchoff, M. Küchler and M. Nobis With over 1500 colour illustrations Prof. Dr. Fritz Schweingruber Institute for Forest, Snow and Landscape Research WSL Zürcherstrasse 111 Dr. Bruce K. Kirchoff 8903 Birmensdorf, Switzerland Department of Biology Annett Börner University of North Carolina at Greensboro Greensboro, NC 27402-6170, USA PO Box 808 Melrose Park SA 5039, Australia Dr. Meinrad Küchler Dr. Michael Nobis Prof. Dr. Ernst-Detlef Schulze Institute for Forest, Snow and Landscape Max Planck Institute for Biogeochemistry Research WSL PO Box 100164 Zürcherstrasse 111 07701 Jena, Germany 8903 Birmensdorf, Switzerland ISBN 978-3-642-20434-0 e-ISBN 978-3-642-20435-7 DOI 10.1007/978-3-642-20435-7 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2012942068 © Springer-Verlag Berlin Heidelberg 2013 The photos on the following pages are published with the kind permission of the respective authors, whose names are indi- cated in the figure legends: Louis-M. Landry - pp. 33, 145, 118, 160, Per Arvid Åsen - p. 158 Pablo Necochoa - p. 40 203, 181, 199, 160 Faria Chowdhury - p. 106 Patrick Nicolas - p. 7 Marianne Lauerer - pp. 101, 143, 169, Brad Cotten - p. 40 Luigi Rignanese - p. 73 247, 256, 208 Hubertus Eicke - p. 118 Dave Riseborough - p. 145 Gregor Aas - pp. 129, 137, 262 Willem Frost - p. 169 Apollonio Tottoli - p. 98 Barry Rice - pp. 199, 254, 259 Grenville Godfrey - p. 33 Ann Van Roy - p. 162 Leonora Enking - pp. 7, 162 Chris Hendrickson - p. 280 Wolfgang Völkl - p. 84 Manuel Gil - pp. 205, 256 Wolfgang Katz - p. 173 Anne Vorstenbosch - p. 162 Patricio Novoa - pp. 38, 106 Elias Landolt - p. 118 BriAnna Weldon - p. 205 Barry Breckling - pp. 40, 98 Graeme Lyons - p. 199 John Winder - p. 280 All rights reserved. This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is con- cerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on mi- crofilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply , even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Cover illustrations (from right): Cross-section of a dwarf shrub stem with successive cambia. Vessels and fibers are stained red, parenchyma cells are stained blue. Chenopodium frutescens, Amaranthaceae, grows in the Mongolian steppes. Cross-section of an old rhizome of an herb. The large red stained rays separate yellow stained radial vessel/fiber zones. Peuce- danum venetum, Apiaceae, grows in the dry meadows of the Southern Alps. Radial section of a liana stem. Radially arranged crystals in the vessel of a vine. Vitis vinifera, Vitaceae, grows in Mediterranean riparian zones. Cross-section of a water plant stem. Vessels in the center of the stems are surrounded by the phloem and an airconducting tissue. The white dots represent calcium oxalate crystals. Myriophyllum alternifolium, Haloragaceae, grows in ponds. The picture to the left is part of Peucedanum venetum. All slides were stained with safranin and astra blue and photographed in polarized light. Cover design: deblik Berlin, Germany Camera-ready by Annett Börner, Adelaide, Australia Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) V Acknowledgements We have to thank many colleagues and institutions: Katharina Neumann (Frankfurt M., Germany) provided slides from Northern Africa. Patrik Kuss (Zurich, Switzerland) pro- The Federal Research Institute and the Max-Planck Institute vided many species from the Yamal Peninsula of Russia. for Biogeochemistry provided a scientific infrastructure and financial support at Birmensdorf (FS) and at Jena (EDS and Stephan Shiyatov (Yekaterinburg, Russia), Eugene Vaganov AB). Many colleagues in Birmensdorf, in the mechanical work- and Vera Benkova (Krasnoyarsk, Russia) collected material on shop (Arthur Kölliker), the carpenter shop (Sigi Witzemann, many expeditions in Siberia and helped with the identification Albert Buchwalder), the IT-Departement (Bert Höwecke), the of plants. Victor Voronin (Irkutsk, Russia) provided an excellent library (Christine Matter, Claudia Grütter-Berger) and friends collection of the cold steppes of the Lake Baikal. supported the study. Silvia Dingwall and Melissa Dawes spent much time to edit the texts. Willy Neuhaus was always willing Marina Mosulishvili introduced FS to the Flora of Georgia and to explain FS mechanisms of the Excel-Format. identified all species from the Caucasus region. We thank Dr. David Remington, UNC Greensboro USA for Fidel Roig jun. (Mendoza, Argentina) accompanied FS on an his assistance with the statistical analyses in the Paedomorphosis excursion to the Andes and his father Fidel Roig sen. identified chapter, and for helpful discussion of these results. many plants from Argentina and Chile. Davoud Parsa Pajouh, Karadj, Iran, accompanied FS on excursions in Iran. Martin Pieter Baas (Leiden, Netherlands), David Drew (Hobbart, Aus- Fisher, Muscat, Oman, identified many species from Oman. tralia), Helmut Freitag (Kassel, Germany), Patrick Fonti and Holger Gärtner (Birmensdorf, Switzerland), Rudolf Häsler (Zu- Vera Markgraf (Flagstaff, USA) and Hal and Miriam Fritts rich, Switzerland), Heike Heklau (Halle, Germany), Christian (Tucson, USA) supported FS with the collection and identifica- Körner (Basel, Switzerland), Dean Nicolle (Adelaide, Australia) tion of plants from Colorado and Arizona. Hansjorg Diez (Zu- and Simcha Lev-Yadun (Haifa, Israel) made many substantial rich, Switzerland) provided many species from the Great Plains critical remarks and suggestions to improve the scientific con- in USA and Germany and John Banks (Canberra, Australia) tent. from Australia. Many Botanical Gardens provided Material: Basel, Switzerland We also thank the following people for providing photos: Klaus- (Bruno Erni), Bern, Switzerland (Christian Bühler), Ekaterin- Dieter Zinnert, Elias Landolt, Marianne Lauerer, Thomas Stüt- burg, Russia (Sergei Shavnin), München, Germany (Susanne zel, Gregor Aas, Per Arvid Åsen, Barry Breckling, Faria Chowd- Renner), Regensburg, Germany (Peter Poschlod), Zurich, Swit- hury, Simon S. Cohen, Brad Cotten, Hubertus Eicke, Leonora zerland (Bernhard Hirzel and Peter Enz), Viera y Clavijo, Jar- Enking, Willem Frost, Manuel Gil, Grenville Godfrey, Chris din Canario, Gran Canaria, Spain (David Bramwell), Jardim Hendrickson, Harmen Hendriksma, Ottmar Holdenrieder, Botanico Lisboa, Portugal, Gärtnerei Ernst Rieger, Blaubeuren, Wolfgang Katz, Louis-M. Landry, Graeme Lyons, Tara Massad, Germany. Gary A. Monroe, Pablo Necochoa, Patrick Nicolas, Patricio No- voa, Angela Nüske, Barry Rice, Luigi Rignanese, Dave Risebor- The xylarium of the Rijksherbarium Leiden provided some ma- ough, Birgit Schulze, Waltraud Schulze, Horst Thor, Apollonio terial. Alan Crivellaro (Padova, Italy) provided a complete slide Tottoli, Ann Van Roy, Wolfgang Völkl, Anne Vorstenbosch, collection from Cyprus. BriAnna Weldon, John Winder and Scott Zona. Ulf Büntgen (Birmensdorf, Switzerland) and Berhard Frauen- FS especially thanks his wife Elisabeth. Without her patience at berger (Freiburg i.Br., Germany) provided many species from home and on countless field trips the present work would not the east coast of Greenland. have been possible. VII Table of Contents Acknowledgements ................................................V Ebenaceae ....................................................169 Frankeniaceae ..............................................173 Abbreviations ....................................................VIII Garryaceae ...................................................176 1. Introduction to Volume 2 ...................................1 Hippuridaceae .............................................179 2. Monographic Descriptions .................................5 Hydrangeaceae ............................................181 Actinidiaceae ...................................................7 Lamiaceae ....................................................186 Adoxaceae ......................................................11 Lentibulariaceae ...........................................199 Apiaceae ........................................................17 Linnaeaceae .................................................203 Aquifoliaceae .................................................29 Myrsinaceae .................................................205 Araliaceae ......................................................33 Oleaceae ......................................................208 Asteraceae ......................................................38 Orobanchaceae ............................................216 Mutisieae .................................................40 Plantaginaceae .............................................226 Cardueae .................................................43 Polemoniaceae .............................................247 Lactuceae .................................................54 Rafflesiaceae ................................................252 Inuleae.....................................................64 Roridulaceae ................................................254 Gnaphalieae .............................................68 Sapotaceae ...................................................256 Calenduleae .............................................73 Sarraceniaceae ..............................................259 Astereae ...................................................76 Scrophulariaceae ..........................................262 Anthemideae ...........................................83 Solanaceae ...................................................271 Senecioneae .............................................91 Styracaceae ..................................................280 Heleniae ..................................................98 Valerianaceae ...............................................282 Heliantheae ...........................................101 Verbenaceae .................................................288 Eupatorieae ...........................................106 3. Ecological, Morphological, Taxonomical and Tageteae .................................................108 Functional Significance of Stem Features Within Summary ..............................................109 the Dicotyledons ............................................293 Balsaminaceae ..............................................113 4. Anatomical Adaptations to Environmental Condi- Boraginaceae................................................117 tions ...............................................................355 Callitrichaceae .............................................127 Campanulaceae ...........................................129 5. Ontogeny of the Xylem ..................................371 Caprifoliaceae ..............................................137 6. Secondary Woodiness and Paedomorphosis ....383 Clethraceae ..................................................143 7. Conclusions ...................................................387 Convolvulaceae............................................145 Cornaceae ....................................................154 References ..........................................................389 Diapensiaceae ..............................................158 Alphabetic List of Species ...................................395 Diervillaceae ................................................160 Dipsacaceae .................................................162 VIII Abbreviations ae aerenchym mu mucilage bpit bordered pit nu nucleus ca cambium p perforation cal callus, parenchymatic cells pa parenchyma clu cell lumen, cell lumina ph phloem co cortex phe phellem cork phg phellogen ct conjunctive tissue pit cry crystal pith csi collapsed sieve tubes cu cuticula r ray rd resin duct di (ray) dilatation ds dark-stained substances sc sclereid duct sf septate fibers shc sheath cell ep epidermis si sieve tube, sieve element en endodermis spit simple pit ew earlywood ewv earlywood vessel ta tannins ewt earlywood tracheid te tension wood tr tracheid ft fiber tracheid ty tylosis f fiber ulcw unlignified cell wall ge gelatinous fibers gr growth ring v vessel grb growth ring boundary vab vascular bundle vat vascular tracheid he helical thickenings vrp vessel-ray pits ivp intervessel pit xy xylem la laticifers lf libriform fiber lcw lignified cell wall lw latewood lwv latewood vessel lwt latewood tracheid 1 1. Introduction to Volume 2 1.1 Phylogeny and Taxonomy Volume 2, as a continuation of Vol. 1, provides monographic During the process of family characterization for Chapter 2, descriptions for an additional 1295 species from 39 families. additional species have been collected, prepared and analyzed. The major objectives, sampling design, sample preparation, and Therefore, the statistical analyses in Chapters 3 and 4 are the anatomical characterizations are identical in both volumes. based on an extended dataset of 3347 species. An up-to-date With the description of 2948 species within 124 families, Vol- table of all analyzed species can be found on the internet at umes 1 and 2 cover all dicotyledonous classes and plant orders, http://www.wsl.ch/dendro/xylemdb/index.php. excluding monocotyledons, as indicated in Fig. 1.1 on the next page. The scientific limitations of the dataset are described in Vol.1 on p. 2. 1.2 Geographic and Climatic Origin Origin of sampled species The majority of plants had been collected in Western Europe 1000 and Russia with fewer species collected in the Canary Islands 3 Africa 12 Australia, S-Asia (Macaronesia), northern Africa, the Americas and Australia 52 S-America (Fig. 1.2). ns 800 130 N-Africa, near East o 157 Macaronesia ati 325 N-America The dataset covers all vegetation zones although the tropics are erv 600 2668 Europa, Russia, Georgia s b represented by only a few species. The vegetation/climate zones o are defined in Vol. 1 on p. 9. er of 400 b m u N 200 Right: Fig. 1.2. Number of the analyzed species in relation to the geographic origin and plant height. 0 2-10 10-25 25-50 50-100 100-150 150-300 >300 Plant height (cm) F. H. Schweingruber, A. Börner, E.-D. Schulze, Atlas of Stem Anatomy in Herbs, Shrubs and Trees, DOI 10.1007/978-3-642-20435-7_1, © Springer-Verlag Berlin Heidelberg 2013 2 Angiosperm Phylogeny Flowering Plant Systematics A AMBORELLALES Amborellaceae N GR NYMPHAELALES Cabombaceae Hydatellaceae Nymphaeaceae TI AD AUSTROBAILEYALES Austrobaileyaceae Schisandraceae (incl. Illiaceae) Trimeniaceae A E CHLORANTHALES Chloranthaceae SM CANELLALES Canellaceae Winteraceae A REPSOIGNYLR MAGNOLIDS PLMAAICAPUOGERRRNAAAOLLLELEEISASSLES DACHGAAnrceayoiodnsglmytrnoecoaoonnalcroraenteaeccrtacihhgeaeeiaaacaacceeceee aeaaeaeee EHLHPSauiaiepmupurenraoraruanmacrntcaeaadecantiaiaeeadecacr eaeeacaeeea e MMMSiayoprgnaisnirmutoicnilaiaaacccceeeeaaaaeeee EA ALISMATALES AAlpisomnoagtaectoenaaec (einacel. LimBnuotcohmaarictaecaeeae) JPuonscidaogniniaacceeaaee RScuhpepuiacchezaeeri a c eae Araceae Hydrocharitaceae Potamogetonaceae Zosteraceae MONOCOTS PETROSAVIALES Petrosaviaceae DIOSCOREALES Burmanniaceae Dioscoreaceae Nartheciaceae Taccaceae PANDANALES Cyclanthaceae Pandanaceae Velloziaceae LILIALES CAlosltcrhoiecmaceeriaaeceae LCioliarscieaaceeae PMeetlearnmthaiannceiaaceeae PSmhilielasciaacceeaaee Amaryllidaceae (incl. Agapanthaceae, Alliaceae) ASPARAGALES Asparagaceae (incl. Agavaceae, Hyacinthaceae, Ruscaceae) n HXaypnothxoidrrahcoeeaaec eae (incIlr.i dAascpehaoed leaceae, HeLmaenraorciaaclleidaaeceae) Orchidaceae o ARECALES Arecaceae cti COMMELINDS PCOOAMLMEESLINALES BCCryoopmmemreaelicaliencaeaeaceeaeJuEncriaoHcceaaaeuemlaocedaoReraacpeaateePaocaecaePeaoentedTeyrpRiahecasectaeioeanea c(ienacel. SparXgaynridiaacceeaaee) u ZINGIBERALES CCaonstnaacceeaaee HLoewliciaocneiaaceeae MMaursaancteaaceeae SZitnregliibtzeiaracceeaaee d CERATOPHYLLALES Ceratophyllaceae ro RANUNCULALES BCeirrcbaeeraidsatecreaacee ae ELaurpdtiezlaebaacleaaceeae MPaepnaisvpeerarmceaaceeae Ranunculaceae t SABIALES Sabiaceae n PROTEALES Nelumbonaceae Platanaceae Proteaceae I OTS TROCHODENDRALES Trochodendraceae DIC BUXALES Buxaceae (incl. Didymelaceae) Haptanthaceae U E GUNNERALES Gunneraceae Myrothamnaceae DILLENIALES Dilleniaceae SAXIFRAGALES CAletirncgidiaipcheyalela ceae DGaropshsnuiplahryiallcaecaeeae HPaaemoanmiaecleidaaeceae Crassulaceae Haloragaceae Saxifragaceae VITALES Vitaceae ZYGOPHYLLALES Krameriaceae Zygophyllaceae CELASTRALES C(ineclal.s Htriapcpeoacerateaceae, Brexiaceae) LPeaprnidaosbsoiatrcyeaaceeae Achariaceae Euphorbiaceae Ochnaceae Podostemaceae MALPIGHIALES CChlursyisaocbeaalea naceae HLiynpaecreicaaeceae PPahsysllaiflnotrhaacceeaaee RRahfizfloepsihaocreaaceeae IOSIDS OXALIDALES BCErreuyptnhheralollioxatycaleacaceeea aee MaCClpouignnhnoianaricaaeccaeeeaaee PicrodEHenluadaercoaeccaaeerapeaceSaea l ic aceOaxealidVacioelaaceeae COTS EUR RFAOBSAALLEESS FBCaaabrnbanecayebaaaceceeaaee EMPlooalreyagacagelnaaaceceeaaee QRUolumsilalaaccjaeecaaeeeae Surianaceae DI Dirachmaceae Rhamnaceae Urticaceae (incl. Cecropiaceae) U C EORE OSIDS CFAUGCAULREBSITALES BCBAeenatgissuuoolaanpcrihaienycaalelecaa eceaeea e FJCCuaooggrriylaaancrnoieadcacaaeecr aepeaa eceae MNCDouaytctrhiiuscocrabfacaicetgaeaacaeceeeaaee RTTeihctooraidpmeteneldlearacaceceeaaaeee R GERANIALES Francoaceae Geraniaceae Ledocarpaceae Melianthaceae Combretaceae Myrtaceae Penaeaceae (incl. Oliniaceae) MYRTALES LMyethlarsatcoemaaet a(icnecal. eP (uinncicl.a Mceeamee, cSyolancneearaet)iaceaOen, aTgrarapcaecaeeae) Vochysiaceae CROSSOSOMATALES CGreoissssoolsoommaatatacceeaaee SSttaacphhyyuleraacceeaaee Strasburgeriaceae IIOSIDS SPAICPRINADMANLIAELSES BPAuincrarsacemarrandciiaaeccaeeeaa ee MNietrlaiarciaecaeea e SRauptaincdeaacee (ainecl. CneorSacimeaaero) ubaceae EUR HUERTEALES Dipentodontaceae Gerrardinaceae Petenaeaceae Tapisciaceae Bixaceae Malvaceae (incl. Bombacaceae, Sterculiaceae, Tiliaceae) MALVALES CDiispttaecroecaaerpaceae Cytinaceae MNeuunrtaindgaiacceeaaee SThayrcmoelalaeenaacceeaaee BRASSICALES BBaratassciecaaeceae CCaleroicmacaecaeeae LMimorninagnathceaaceeae SToavlvaaridaocreaaceeae Capparaceae Koeberliniaceae Resedaceae Tropaeolaceae BERBERIDOPSIDALES Aextoxicaceae Berberidopsidaceae SANTALALES BLoarlaannothpahcoeraaeceae MOliasocadceenaderaceae SOapnilitaaclaecaeeae (incl. VisScaccheoaeep)fiaceae Aizoaceae Caryophyllaceae Molluginaceae Polygonaceae Amaranthaceae Didiereaceae Nepenthaceae Portulacaceae CARYOPHYLLALES B(inacsle. Cllahceenaoep odiaceae)DDrroosseorpahcyellaaeceae NPhycyttaoglainccaacceeaaee STaimlinmaocnedaseiaceae Cactaceae Frankeniaceae Plumbaginaceae Tamaricaceae CORNALES CCourrntisaicaecaeea e GHyrudbrabniagceeaaceeae LNoyasssaacceeaaee Actinidiaceae Ericaceae Myrsinaceae Polemoniaceae Sarraceniaceae ERICALES BCalelstharmacineaacee a e FEobueqnuaiceeriaaec eae PRroimriduulalacceeaaee SThtyeraacceaaceeae Diapensiaceae Lecythidaceae Sapotaceae Theophrastaceae GARRYALES Eucommiaceae Garryaceae (incl. Aucubaceae) RIDS GENTIANALES GApeonctiyannaacceeaaee (incl. AsGcleelpsieamdaiacceeaaee) RLougbaianciaecaeeae ASTE I SDIRETSAU LSAOMLAIANLAELSES GBHBACHyicyoyegbaddnsnlnrrnviooodtoenhslaleriavticaaaauceccccelaeaheeaeacyaaeeeaeeacee a(eincl. CMOLLOMeaulraoeonmsrnabttciiytcabauinnecuntiaiaealacaceachcreeeeiaaaaacceeeee)aaee PPSSPPaneaophladdulhrany aleHontmalniwaiagoapcnciccpeneileuaaeaaarceacieeede c (aa eai necaecee l(a.i neNc)ol.l aVSSCnetcaiarlrlbbolciateeprcinahceaeuhac)laaeecr aieaeacee ae E BORAGINALES BCoordaogninaacceeaaee CEhorredtiaiacceeaaee (incl. LenHneolaiocteroapei)aceae WHyedllrsotpehdyiallcaecaeeae AQUIFOLIALES Aquifoliaceae Cardiopteridaceae Stemonuraceae Asteraceae Goodeniaceae Pentaphragmataceae F(Fwioinwgl l.wro e1w2d..)i1bn i.ign oP lcCohlguoyidell.oeefdgu ea -ibnnneed rtbl iioHcn t.htidrl eegv/eose ylrisunb m(do2tie0/cpsa1 oto0sitfn)e ,gtr h/ ptisho sestt eufra1dm.yp.i dlifes II ESDIRETSAU PBEAAARSSPRCTIUAEAANLRCLIEALARSLOLYEENPSSIHAILAELSES CAPBECAparsraauacirlmayanlaiccapcilaleecroacyraennaepeaiucahaeleeicaaaecceaeeeaaee (incl. CGMMLooreyiblsonueedymllaoiianenccilatalehiracapaceeacea)ecaeeae ae (e incl. PRPSDeitoetytnusolinfsdsosaipnaenotcatareicaainaeccieaeeaeaa)ee DIPSACALES CAdaopxriafocleiaaceeae DDiipesrvaicllaacceeaaee MLinonrianeaaceceaaee Valerianaceae 3 1.3 Life Forms The dataset includes eleven life forms as described by Raunkiaer (Ellenberg et al. 1992). P: Phanerophytes. Woody plants that grow taller than 4 m T: Therophytes. Annuals. Plants whose shoot and root system (trees). dies after seed production and which complete their life cycle within one growing season (spring, summer, fall). Included N: Nanophanerophytes. Woody, shrub-like 0.5-4 m high are only specimens with one tree ring. plants. Liana: Mostly perennials, plants with extremely long shoots, C: Chamaephytes. Herbaceous to semi-woody perennials. I which need normally structural support by other species. n Dwarf shrub-like plants whose mature branch or shoot sys- t r tem remains perennially 25-50 cm above ground surface. Climbers: Plants climbing with adhesive roots growing over o other plants or objects. d Z: Woody chamaephytes. Dwarf shrubs with less than 50 cm u height. Hydrophyte: Water plants where most parts live and root below c t H: Hemicryptophytes. Perennial herbaceous (including bienni- the water table. io als) plants. With periodic shoot reduction to a remnant shoot Helophyte: Terrestrial plant rooting in wet ground. n system that grows relatively flat on the ground. Here we in- Succulent: Plant with water-storing tissues. clude most of the geophytes (G) whose surviving shoot system normally remains below surface. Also included are winter- annuals, which perform their life cycle between fall to late spring. These winter annual plants form two rings. 1.4 Anatomical Features All features as described in Vol. 1, pp. 13- 32 have been used for the characterization of the species described in Vol. 2. Two additional features (Features 60.1 and 70.3) are used for the characterization of species in Vol. 2 (Figs. 1.3-1.6). 60.1 Fibers absent. 70.3 Fibers absent in the stem center. 250 µm 250 µm 250 µm 250 µm Fig. 1.3. Euphorbia nicaeensis, Fig. 1.4. Arenaria ciliata, Fig. 1.5. Nonea erecta, Boragi- Fig. 1.6. Jovibarba hirta, Crassu- Euphorbiaceae, herb. Caryophyllaceae, herb. naceae, herb. laceae, succulent plant. 4 1.5 Morphological and Ecological Interpretation of Features In Chapters 3 and 4 of the present volume we relate the stem Lignification appears to be related to water, nutrient and phy- anatomical features of the whole dataset to plant height, as it tohormone transport (Nardini et al. 2011), which in turn is appears that static and hydraulic functions have been optimized related to plant size and leaf area. The wood anatomy would in evolutionary processes, mainly in response to plant height. also be affected by climate seasonality (drought or frost), which The actual APG III DNA-based taxonomic classification gener- results in tree rings with early- and latewood. A seasonality of ally does not coincide with specific morphological or anatomi- water demand with bud break and flushing leaves will cause n cal characteristics. The description of plant diversity in view of a differentiation in the dimensions of vessels even during a o the differentiation in xylem structures remains a major prob- single growing season. In seasonal climates, plants may avoid i t c lem. The “life-form” classification of Raunkiaer (1904), which climatic stress by the shedding of leaves, short shoots (cladap- u is still commonly used in vegetation science, does not treat stem tosis), branches, or the whole above-ground canopy (hemicryp- d features adequately. The Raunkiaer classification is based on the tophytes), or they may endure the climatic stress and have ever- o r position of the regenerating bud in relation to the soil surface as green foliage and perennial stems. This has major implications nt a survival strategy in seasonal climates - an interpretation which for the storage of reserves in seasonal climates, and on stem I has been questioned in the past (see Schulze 1982). Also, bud anatomy. Reserves could be stored in the leaves, stems, hypo- height may be quite different from plant height considering the cotyl (including the root collar) or in the phloem and bark, and flower stalks of herbaceous species. Lignification does not cor- this will affect the presence of parenchyma. Large vessels, which respond with the Raunkiaer types of life forms (therophytes, are essential in deciduous species, would not be functional in hemicryptophyte, chamaephytes and phanerophytes). The xy- evergreen trees occurring in seasonal climates (Schulze et al. lem of small and large annual plants (e.g. Arabidopsis thaliana 2005). Thus, all kinds of transitions will exist between these two and Helianthus annuus) can be fully lignified, as in trees. In con- adaptive techniques. trast, some small plants, such as Silene acaulis and water plants, consist primarily of un-lignified cells. Following these considerations, the degree of “woodiness” or “herbaceousness” would be related to (1) plant size and height, In contrast to Raunkiaer’s “life forms”, Monsi (1960) based a (2) the seasonality of climate, and (3) the persistence of foli- structural description on the economy of resource use during age. In the following we will maintain the terms “woody” and growth. He followed Clements (1920), who coined the words “herbaceous” because they are commonly used and easy to un- “herbaceous” and “woody” as descriptors for plant structures. derstand, but in our definition we imply a dynamic range of Monsi (1960) distinguished evergreen and deciduous species lignification, which could be species- or site-related. The degree within both herbaceous and woody plants. However, the clas- of woodiness would be explained by the parameters of plant sification of Monsi (1960) is questionable in an anatomical size/height, habitat seasonality, and the way reserves are stored sense. Lens et al. (2011) describe all kinds of transitions be- in seasonal climates. Obviously, a more functional classification tween more and less lignified plant stems. is needed to incorporate xylem anatomy. In all monographic descriptions (Vol. 1 Chapter 5 and Vol. 2 Chapter 2) we have used Raunkiaer’s life form classification because we were not aware that plant height correlates better with anatomical features than life forms (see Chapter 3 in this volume). Obviously, a more functional classification needs to include xylem anatomy.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.