ebook img

Asymptotics in dynamics, geometry and PDEs; Generalized Borel Summation. / vol. II PDF

289 Pages·2011·2.009 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Asymptotics in dynamics, geometry and PDEs; Generalized Borel Summation. / vol. II

12** CRM SERIES OvidiuCostin MathematicsDepartment TheOhioStateUniversity 231W.18thAvenue Columbus,Ohio43210,USA [email protected] Fre´de´ricFauvet De´partementdemathe´matiques-IRMA Universite´deStrasbourg 7,rueDescartes 67084StrasbourgCEDEX,France [email protected] Fre´de´ricMenous De´partementdemathe´matiques,Baˆt.425 Universite´Paris-Sud 91405OrsayCEDEX,France [email protected] DavidSauzin CNRSParis and ScuolaNormaleSuperiore PiazzadeiCavalieri7 56126Pisa,Italia [email protected] [email protected] Asymptotics in Dynamics, Geometry and PDEs; Generalized Borel Summation vol. II edited by O. Costin, F. Fauvet, F. Menous, D. Sauzin (cid:2)c 2011ScuolaNormaleSuperiorePisa ISBN: 978-88-7642-376-5 e-ISBN:978-88-7642-377-2 Contents Introduction xi Authors’affiliations xv ChristianBognerandStefanWeinzierl Feynmangraphsinperturbativequantumfieldtheory 1 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Perturbationtheory . . . . . . . . . . . . . . . . . . . . 2 3 Multi-loopintegrals . . . . . . . . . . . . . . . . . . . . 6 4 Periods . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 AtheoremonFeynmanintegrals . . . . . . . . . . . . . 8 6 Sectordecomposition . . . . . . . . . . . . . . . . . . . 10 7 Hironaka’spolyhedragame . . . . . . . . . . . . . . . . 12 8 Shufflealgebras . . . . . . . . . . . . . . . . . . . . . . 13 9 Multiplepolylogarithms . . . . . . . . . . . . . . . . . 17 10 FromFeynmanintegralstomultiplepolylogarithms . . . 19 11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 22 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 JeanEcalle withcomputationalassistancefromS.Carr Theflexionstructureanddimorphy: flexionunits,singulators,generators,andtheenumeration ofmultizetairreducibles 27 1 Introductionandreminders . . . . . . . . . . . . . . . . 30 1.1 Multizetasanddimorphy . . . . . . . . . . . . . 30 1.2 Fromscalarstogeneratingseries . . . . . . . . . 32 1.3 ARI//GARIanditsdimorphicsubstructures . . . 35 1.4 Flexionunits,singulators,doublesymmetries . . 36 vi 1.5 Enumerationofmultizetairreducibles . . . . . . 37 1.6 Canonicalirreduciblesandperinomalalgebra . . 38 1.7 Purposeofthepresentsurvey . . . . . . . . . . 38 2 Basicdimorphicalgebras . . . . . . . . . . . . . . . . . 40 2.1 Basicoperations . . . . . . . . . . . . . . . . . 40 2.2 Thealgebra ARI anditsgroupGARI . . . . . 45 2.3 Actionofthebasicinvolutionswap . . . . . . . 48 2.4 Straightsymmetriesandsubsymmetries . . . . . 49 2.5 Mainsubalgebras . . . . . . . . . . . . . . . . . 52 2.6 Mainsubgroups . . . . . . . . . . . . . . . . . . 53 2.7 Thedimorphicalgebra ARIal/al ⊂ ARIal/al. . . 53 2.8 ThedimorphicgroupGARIas/as ⊂ GARIas/as . 54 3 Flexionunitsandtwistedsymmetries. . . . . . . . . . . 54 3.1 Thefreemonogenousflexionalgebra Flex(E) . 54 3.2 Flexionunits . . . . . . . . . . . . . . . . . . . 57 3.3 Unit-generatedalgebras Flex(E) . . . . . . . . 61 3.4 Twistedsymmetriesandsubsymmetries inuniversalmode . . . . . . . . . . . . . . . . . 63 3.5 Twisted symmetries and subsymmetries in polar mode . . . . . . . . . . . . . . . . . . . . . . . 67 4 Flexionunitsanddimorphicbimoulds . . . . . . . . . . 70 4.1 Remarkablesubstructuresof Flex(E) . . . . . . 70 • • 4.2 Thesecondarybimouldsess andesz . . . . . 79 • • 4.3 Therelatedprimarybimouldses andez . . . . 87 4.4 Somebasicbimouldidentities . . . . . . . . . . 88 4.5 Trigonometricandbitrigonometricbimoulds . . 89 4.6 Dimorphicisomorphismsinuniversalmode . . . 94 4.7 Dimorphicisomorphismsinpolarmode . . . . . 95 5 Singulators,singulands,singulates . . . . . . . . . . . . 99 5.1 Someheuristics. Doublesymmetriesandimparity 99 5.2 Universalsingulatorssenk(ess•)andseng(es•) . 101 5.3 Propertiesoftheuniversalsingulators . . . . . . 102 5.4 Polarsingulators: descriptionandproperties. . . 104 5.5 Simplepolarsingulators . . . . . . . . . . . . . 105 5.6 Compositepolarsingulators . . . . . . . . . . . 105 5.7 Fromal/al toal/il. Natureofthesingularities . 106 6 Anaturalbasisfor ALIL ⊂ ARIal/il . . . . . . . . . . 107 6.1 Singulation-desingulation: thegeneralscheme . 107 6.2 Singulation-desingulationuptolength2 . . . . . 111 6.3 Singulation-desingulationuptolength4 . . . . . 112 6.4 Singulation-desingulationuptolength6 . . . . . 112 6.5 Thebasislama•/lami•. . . . . . . . . . . . . . 116 vii 6.6 Thebasisloma•/lomi• . . . . . . . . . . . . . . 116 6.7 Thebasisluma•/lumi• . . . . . . . . . . . . . 117 6.8 Arithmeticalvsanalyticsmoothness . . . . . . . 118 6.9 Singulatorkernelsand“wandering”bialternals . 119 7 Aconjecturalbasisfor ALAL ⊂ ARIal/al. Thethreeseriesofbialternals . . . . . . . . . . . . . . . 120 7.1 Basicbialternals: theenumerationproblem . . . 120 7.2 Theregularbialternals: ekma,doma . . . . . . . 120 7.3 Theirregularbialternals: carma . . . . . . . . . 121 7.4 Main differences between regular and irregular bialternals . . . . . . . . . . . . . . . . . . . . . 121 7.5 Thepre-domapotentials . . . . . . . . . . . . . 123 7.6 Thepre-carmapotentials . . . . . . . . . . . . . 124 7.7 Constructionofthecarmabialternals . . . . . . 126 7.8 Alternative approach . . . . . . . . . . . . . . . 127 7.9 Theglobalbialternalidealandtheuniversal ‘restoration’mechanism . . . . . . . . . . . . . 129 8 Theenumerationofbialternals. Conjecturesandcomputationalevidence . . . . . . . . . 130 8.1 Primary,sesquary,secondaryalgebras . . . . . . 130 8.2 The ‘factor’ algebra EKMA and its subalgebra DOMA . . . . . . . . . . . . . . . . . . . . . . 132 8.3 The‘factor’algebraCARMA . . . . . . . . . . . 133 8.4 ThetotalalgebraofbialternalsALAL andtheoriginalBK-conjecture . . . . . . . . . . 133 8.5 Thefactoralgebrasandoursharperconjectures . 133 8.6 CelldimensionsforALAL . . . . . . . . . . . . 135 8.7 CelldimensionsforEKMA . . . . . . . . . . . . 135 8.8 CelldimensionsforDOMA. . . . . . . . . . . . 136 8.9 CelldimensionsforCARMA . . . . . . . . . . . 136 8.10 Computationalchecks(SarahCarr) . . . . . . . 137 9 Canonicalirreduciblesandperinomalalgebra . . . . . . 139 9.1 Thegeneralscheme . . . . . . . . . . . . . . . 139 9.2 Arithmeticalcriteria . . . . . . . . . . . . . . . 144 9.3 Functionalcriteria . . . . . . . . . . . . . . . . 144 9.4 Notionsofperinomalalgebra. . . . . . . . . . . 147 • 9.5 Theall-encodingperinomalmould peri . . . . 149 9.6 Aglimpseofperinomalsplendour . . . . . . . . 150 10 Provisionalconclusion . . . . . . . . . . . . . . . . . . 152 10.1 Arithmeticalandfunctionaldimorphy . . . . . . 152 10.2 Mouldsandbimoulds. Theflexionstructure . . . 154 viii 10.3 ARI/GARI andthehandlingofdoublesymme- tries . . . . . . . . . . . . . . . . . . . . . . . . 158 10.4 Whathasalreadybeenachieved . . . . . . . . . 160 10.5 Looking ahead: what is within reach and what beckonsfromafar . . . . . . . . . . . . . . . . 164 11 Complements . . . . . . . . . . . . . . . . . . . . . . . 165 11.1 Originoftheflexionstructure . . . . . . . . . . 165 11.2 From simple to double symmetries. The scram- bletransform . . . . . . . . . . . . . . . . . . . 167 11.3 Thebialternaltesselationbimould . . . . . . . . 168 11.4 Polar,trigonometric,bitrigonometricsymmetries 171 11.5 TheseparativealgebrasInter(Qi )andExter(Qi )175 c c 11.6 Multizetacleansing: eliminationofunitweights 180 11.7 Multizetacleansing: eliminationofodddegrees . 189 11.8 GARI andthetwoseparationlemmas . . . . . 192 se • 11.9 Bisymmetralityofess : conceptualproof . . . . 193 • 11.10 Bisymmetralityofess : combinatorialproof . . 195 12 Tables,index,references . . . . . . . . . . . . . . . . . 198 12.1 Table1: basisfor Flex(E) . . . . . . . . . . . . 198 12.2 Table2: basisfor Flexin(E) . . . . . . . . . . 202 12.3 Table3: basisfor Flexinn(E) . . . . . . . . . . 202 • 12.4 Table4: theuniversalbimouldess . . . . . . . 205 • 12.5 Table5: theuniversalbimouldesz . . . . . . . 206 σ 12.6 Table6: thebitrigonometricbimouldtaal•/tiil• 207 12.7 Indexoftermsandnotations . . . . . . . . . . . 207 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 AugustinFruchardandReinhardSchäfke Ontheparametricresurgenceforacertainsingularly perturbedlineardifferentialequationofsecondorder 213 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 213 2 Thedistinguishedsolutions . . . . . . . . . . . . . . . . 216 3 Stokesrelationsforthefunctions . . . . . . . . . . . . . 221 4 Behaviorneartheturningpoints . . . . . . . . . . . . . 223 5 Theresidue . . . . . . . . . . . . . . . . . . . . . . . . 226 6 Stokesrelationsforthewronskians . . . . . . . . . . . . 228 7 Stokesrelationsforthefactorsofthewronskians . . . . 229 8 Resurgenceoftheseries(cid:2)r(ε)and(cid:2)γ± . . . . . . . . . . . 232 9 ResurgenceoftheWKBsolution . . . . . . . . . . . . . 238 10 RemarksandPerspectives . . . . . . . . . . . . . . . . 240 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 ix ShingoKamimoto,TakahiroKawai,TatsuyaKoike andYoshitsuguTakei OnaSchrödingerequationwithamergingpair ofasimplepoleandasimpleturningpoint —AliencalculusofWKBsolutionsthroughmicrolocal analysis 245 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 YoshitsuguTakei Ontheturningpointproblemforinstanton-typesolutions ofPainlevéequations 255 1 Backgroundandmainresults . . . . . . . . . . . . . . . 255 2 Transformationnearadoubleturningpoint . . . . . . . 261 2.1 ExactWKBtheoreticstructureof(PII,deg) . . . . 261 2.2 Transformation theory to (PII,deg) near a double turningpoint . . . . . . . . . . . . . . . . . . . 265 3 Transformationnearasimplepole . . . . . . . . . . . . 269 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.