Asymptotics for metamaterials and photonic crystals T. Antonakakis1,2,R.V.Craster1andS.Guenneau3 rspa.royalsocietypublishing.org 1DepartmentofMathematics,ImperialCollegeLondon, LondonSW72AZ,UK 2EuropeanOrganizationforNuclearResearch,CERN1211,Geneva23, Switzerland Research 3FresnelInstitute,UMRCNRS7249,Aix-MarseilleUniversity, Marseille,France Citethisarticle:AntonakakisT,CrasterRV, GuenneauS.2013Asymptoticsfor Metamaterial and photonic crystal structures are metamaterialsandphotoniccrystals.ProcR central to modern optics and are typically created SocA469:20120533. frommultipleelementaryrepeatingcells.Wedemon- http://dx.doi.org/10.1098/rspa.2012.0533 stratehowonereplacessuchstructuresasymptotically by a continuum, and therefore by a set of equations, that captures the behaviour of potentially high- Received:7September2012 frequency waves propagating through a periodic Accepted:14January2013 medium.Thehigh-frequencyhomogenizationthatwe userecoverstheclassicalhomogenizationcoefficients in the low-frequency long-wavelength limit. The SubjectAreas: theory is specifically developed in electromagnetics appliedmathematics,wavemotion for two-dimensional square lattices where every cell contains an arbitrary hole with Neumann boundary Keywords: conditionsatitssurfaceandimplementednumerically metamaterials,cloaking,negativerefraction, for cylinders and split-ring resonators. Illustrative numerical examples include lensing via all-angle homogenization negativerefraction,aswellasomni-directiveantenna, endoscopeandcloakingeffects.Wealsohighlightthe Authorforcorrespondence: importanceofchoosingthecorrectBrillouinzoneand R.V.Craster the potential of missing interesting physical effects e-mail:[email protected] dependinguponthepathchosen. 1. Introduction Photonic crystal (PC) media [1,2] and metamaterials [3] are topical areas in optics, and both involve non- resonant or resonant interactions created by waves within periodic structures. Such structures are of considerable current interest [4], with applications to invisibilityandcloaking[5],amongothers.Inphotonics, a typical structure may involve multiple cylindrical holes [6], and in metamaterials, the peculiar properties (cid:2)c 2013TheAuthors.PublishedbytheRoyalSocietyunderthetermsofthe CreativeCommonsAttributionLicensehttp://creativecommons.org/licenses/ by/3.0/,whichpermitsunrestricteduse,providedtheoriginalauthorand sourcearecredited. (a) (b) 2 ..rsp Brillouin zone .a N (0,p/2) X (p/2,p/2) ........royalso ..cie ..ty .p .u k2 X´ (p/4,p/4) M´ (0,p/4) ....blish ..in .g ....org . ......ProcR G (0,0) k1 M (p/2,0) .....SocA .4 BoFfirgilleluonrugeitn1h.z2o(lan()ewA,iintnhiwnlfia=vneitn1e)u.smqubaerresaprarcaey,oufsSeRdRfosrwsqituhatrheeaerlreamyseinntpaerryfceecltllyshpoewrinodaisctmheeddiaasbhaesdeldinaeroinunnedrtshqeuealreem.(ebn)tTahreyicrerelldsuhcoiwblne .........69:201205 .3 .3 of split-ring resonators (SRRs) [7] are typical building blocks. In both cases, the physics is neatly encapsulated and displayed by dispersion diagrams that relate the Bloch wavenumber in the irreducible Brillouin zone to the frequency; these illustrate essential features such as band gaps of frequencies where propagation in an infinite periodic structure is disallowed. Such dispersion diagrams for infinite periodic media can then be used to design the size and geometry of structural elements within a cell to create particular optical features. We turn to arraysofcylindricalholesandtoSRRsinordertoillustratetheversatilityofanewtechniquethat creates effective homogenized models, even at high frequencies, and in doing so also uncover details of how the SRR geometry affects the metamaterial properties. In this article, we treat a specific polarization in electromagnetism, transverse electric (TE), whereby the magnetic field is perpendicular to the plane of periodicity, and we consider perfectly conducting structural elements,suchthattheholeshaveaNeumannconditionuponthem;thisisofparticularinterest astherehasbeendiscussionthathomogenizationtheoryisinvalidforthiscase. Many materials of abiding interest in physics are created from periodically repeating cells such as those of figure 1a, which shows a square array of SRRs with a square cell as the dashed square. Given such a medium, with, say, a defect or many hundreds of cells within a macrocell, it is attractive to replace it with an effective medium on a macroscale; naturally, one hopes that the effective replacement continuum model material captures the behaviour created by the microscale. For long waves, in the quasi-static low-frequency limit, there is an established theory, homogenization theory [4,8–11], that replaces a microstructured medium with an averaged macroscale model; this is highly successful and an attractive approachforlow-frequencywaveswithwavelengthsmanytimesthetypicalcellsize.However, many of the features of interest in real PCs, or other periodic structures, such as all-angle negative refraction (AANR) [12,13] or ultra-refraction [14] occur at high frequencies where the wavelengthandmicrostructuredimensionareofsimilarorders.Therefore,theconventionallow- frequencyclassicalhomogenizationclearlyfailstocapturetheessentialphysics,andadifferent approachtodistillthephysicsintoaneffectivemodelisrequired.Fortunately,ahigh-frequency homogenization (HFH) theory, developed in Craster et al. [15], is capable of capturing features such as AANR and ultra-refraction for some model structures [16]. Somewhat tangentially, there is existing literature in the analysis community on Bloch homogenization [17,18] and, in particular,Hoefer&Weinstein[19],whichisrelatedtowhatwecallHFH.Thereisalsoliterature on developing homogenized elastic media, with frequency-dependant effective parameters, based upon periodic media [20]. There is therefore considerable interest in creating effective 3 continuummodelsofmicrostructuredmediathatbreakfreefromtheconventionallow-frequency homogenization limitations. In this article, we turn our attention to microstructures of abiding interest, perfectly conducting holes (in TE polarization) that have been much studied in the ...rspa hliotewratthuerege[2n1e]raalnHdFtHotmhoedtoelpiiscaulseSdRRanmdethtaemasaytemripatlosttircubcethuarevi[o7u,2r2o]f;tfhoerdbiostphercsaisoens,cuwreveilslufosutrnadte. ........royalso Interesting details such as the behaviour at crossing points, and degenerate behaviour, where ..cie thelocalbehaviourinthedispersioncurveswitchesfromquadratictolinearareallfoundfrom ...typ .u effectivemacroscaleequationsthathavethemicroscalecompletelycapturedwithincoefficients. ...blis IntheSRRcase,thehomogenizationproceduremustbeperformednumerically,andthisisdone ...hin hweirteh;inheancceel,l.with minor modifications, the methodology can now be applied to any geometry .....g.org conOclnustihoenstoapboicutotfhqeupaossis-isbtailtiitcyhofoumsoinggenhiozmatoiogne,naizasteiroinesatoafllp,eavpeenrsfo[r23th–e25lo]wderastwascopuesrtpiclebxainndg ......ProcR .S in the dispersion diagram. For doubly periodic perfectly conducting inclusions with Dirichlet ....ocA (patnerardinocsdovinecrivtseyen)mtbiooanguannledhtaiocrym(TocMogne)ndpiiztoialoatnirosizn,attfhiaoeirlnse,;iit.she.enrwoeiitinhstenarnoceecploetncottrrfoictvhefieresalydcowpueistrthpicetnhbdirsaicnducelhadruwtcoittihothnte.heNplooartnaiegbilonyf,, ........469:2012 .0 the HFH has no such failing, as shown in Craster et al. [15]. The discrepancy in the literature .5 .3 .3 iswith(cylindrical)perfectlyconductinginclusionswithNeumann(TEpolarization)boundary conditions for which analytical multi-pole methods [24] produce linear asymptotics as the acoustic branch approaches zero wavenumber and the precise behaviour is not replicated by conventional homogenization; the slope of the asymptotics is important as it is related to the effectiverefractiveindexofthemediumforlongwaves.Furthermore,ifthecylindershavefinite dielectricproperties,thenthelimitsofzeroconductionandofzerowavenumberdonotcommute. Complementarytothisareclaimsthathomogenizationtheorywillactuallyoperatecorrectly,see the comments and responses by Halevi et al. [26] and Nicorovici et al. [27]. Here, we advance thetheoryofhomogenizationtohigherfrequenciesand,asacorollary,areabletodemonstrate conclusively,usingourapproach,thatonecanindeedhomogenizeperfectlyconductingcylinders intheTEpolarizationforthequasi-staticlow-frequencylimit. Parallel to the electromagnetic setting is a mathematically identical interest in, mainly cylindrical, periodic inclusions in acoustics, water waves and anti-plane elasticity. Homogeni- zation in those settings for long waves relative to the cell spacing leads to effective equations [28,29] that do not appear to have any issues, and if, furthermore, the inclusions are takentobesmall,thensingularperturbationtheorycanbeemployed[30],orasymptoticcoupled modetheory[31],togoodeffect. WegenerateanHFHtheoryforrepeatingcellscontainingNeumanninclusions;thislimiting caseisnotcoveredwithinCrasteretal.[15]andisofindependentinterest,evenatlowfrequencies. The general high-frequencymodel is developed in §2, with the low-frequencylimit covered in a §2b. Armed with the general theory, we verify its efficacy upon the well-studied cylindrical inclusion case (§3a), which allows us to demonstrate that homogenization does indeed work despite arguments to the contrary, and for all frequencies, not just in the low-frequency limit. ThecylindricalinclusionscontrastwiththeSRRs,whereadditionalbranchessplitfromthosein thecylindricalcase,andforwhichinterestingasymptoticresultsemergein§3b.Section4givesan overviewofcomplementarygeometricalasymptoticlimits.TheHFHasymptoticsgiveadditional physicalinsightthatthenmotivatesustoexplorefurtherfeaturesoftheSRRsandcylindersin§5. Finally,concludingcommentsandremarksarepresentedin§6. 2. Generaltheory For infinite perfectly periodic media, consisting of elementary cells that repeat, one focuses attentiononasingleelementarycell;quasi-periodicFloquet–Blochboundaryconditionsdescribe the phase shift as a wave moves through the material, and dispersion relations then relate the Blochwavenumber,thephaseshift,tofrequency.TheBlochwavenumberisavector,andfigure1b 4 shows the irreducible Brillouin zone [32] ΓXM associated with a single repeating elementary squarecellcontaining,say,acircularhole,alsoshownisthesmallertriangleforagroupoffour repeating cells. The dispersion diagrams we show are frequency versus wavenumber around ...rspa ptdhaoetihnegdogtchceiussromsffitoshsreeasBisrnqiltuleoarueriesntianzrgorandyee,otaafsilssitsr[i3tnr3ga]sd,aiatniloodnnwagleMiinlXlus(cid:3)os(ltairdap-tseattathhteitshplaahttyeisrsicbmsy.isTnsohetedirnebgyatrhgeaooticnacgpaseairrofoenucsntlwdyhfltheanet ..........royalsocie pathΓXM)andthatanalmostflatbandoccursforanarrayofcylinders;thisflatbandleadsto ...typ .u directionalstandingwavepatterns.Wealsonotethatthesymmetryoftheholeisimportant,and ...blis forthetwothinligamentSRRoffigure1a,oneshouldusethesquareΓMXN. ...hin andThweheeingetnhseosleuteioignesnstholauttieomnsergareeapreerftehcetlyBloinchpmhaosdeeosraotuthteofedpgheasseofactrhoessBrthilelouceinll,ztohneen, .....g.org sAtasynmdipntgotwicatveecshenxiqisut,esanbdastehderaeroaurendstahnigdhin-fgrewquavenecfyrelqounegn-wcieasve(washyomsepftroetqicusehnacvieesrceacnenbtelyhbigehen). ......ProcR .S developed [15], and Schrödinger ordinary differential equations in one-dimensional periodic ....ocA media (or partial differential equations in two dimensions) emerge; this approach also works .4 pfoerrfmecictlryosctorundctuucrteidngdihsoclreestea[n3d4]hoarvferammaet-elriikaelmpreodpiear[t3ie5s].vTahreysinegrepceernitotdhiecoalrliyesoanvtohidesthcaeliessoufethoef .......69:2012 .0 elementarycellandonlytreatmodelproblems,mainlyinonedimension,forwhichcompletely .5 .3 .3 analytic progress can be made. The key idea for periodic media is to replace the complicated microstructuredmediumwithanequivalent,effective,continuumonamacroscale,thatis,one wishes to homogenize the medium, even when the wavelength and microstructure may be of similarscales. Thetheoryisultimatelynotlimitedtojustreproducingdispersioncurvesasymptotically,and it can be adjusted to treat localized defect modes and other features due to local non-periodic materialchangesorboundaries,withtheseeffectscomingthroughinextraforcingtermswithin thecontinuumpartialdifferentialequations. Webeginwithatwo-dimensionalstructurecomposedofasquarelatticegeometryofidentical cellswithidenticalholesinsideeachofthem.Thesidelengthofthedirectlatticebasevectors,i.e. the side of each square cell, is taken as 2l. Note that for simplicity, equal length lattice vectors and a square lattice are assumed, and both assumptions could be relaxed. These elementary cellsdefinealengthscalethatisthemicroscaleofthestructure.Asnotedabove,realstructures couldbecreatedfrommanyhundredsorthousandsofsuchelementarycells,andweintroducea macroscalelengthdenotedbyLthatcouldbeviewedasacharacteristicoveralldimensionofthe structure.Theratioofthesescales,(cid:3)≡l/L,isassumedsmall. Each cell is identical in geometry and the material within each cell is characterized by two periodic functions, in ξ≡(x1/l,x2/l), namely aˆ(ξ) and ρˆ(ξ). Depending on the application, these could be stiffnesses and density for shear horizontal polarized elastic waves or inverse permittivityandpermeabilityinelectromagnetism.Thegeometryisspecificinthesensethatit containsanarbitraryhole,orsetofholes,andboundaryconditionshavetobeprescribedonthe hole.Inthisstudy,Neumannconditionswillbeusedthatarethenaturalboundaryconditionsfor perfectlyconductingholesinthetransverseTEpolarizationofelectromagnetismorforstress-free holesinanti-planeshearelasticity. A time-harmonic dependence of propagation exp(−iωt), with frequency ω, is assumed throughout,andhencef(cid:2)orthsuppressed,andanon-dimensionalizationbysettingaˆ≡aˆ0a(ξ)and ρˆ≡ρˆ0ρ(ξ),wherecˆ0= aˆ0/ρˆ0isthecharacteristicwavespeed,leadstotheresultingequationof study, ωl l2∇x·[a(ξ)∇xu(x)]+Ω2ρ(ξ)u(x)=0, with Ω= cˆ , (2.1) 0 on−∞<x1,x2<∞;Ω isthenon-dimensionalfrequencyanduistheout-of-planedisplacement inelasticityortheH3componentofthemagneticfieldinTEpolarization. The two-scale natureof the problem is incorporatedusing the small and large lengthscales 5 to define two new independent coordinates, namely X=x/L, and ξ=x/l. Equation (2.1) then becomes ..rsp Sta∇nξd·in[ag(ξw)∇avξeus(Xo,cξc)u]r+wΩhe2nρ(tξh)eur(eXa,rξe)p+er(cid:3)i[o2da(icξ)(∇orξa+n∇ti-ξpae(ξri)o]d·i∇cX)ub(oXu,nξd)a+ry(cid:3)2cao(nξd)∇itiX2oun(sXa,ξcr)o=ss(02t..h2e) ..........a.royalsocie elementary cell (in the ξ coordinates), and these standing waves encode the local information ..ty .p aboutthemultiplescatteringthatoccursbytheneighbouringcells.Theasymptotictechniqueis ..ub then a perturbation about these standing wave solutions, as these are associated with periodic ...lish andanti-periodicboundaryconditions,whichare,respectively,in-phaseandout-of-phasewaves ...ing acrossthecell;theconditionsinξ ontheedgesofthecell,∂S1,areknown, .....org u|ξi=1=±u|ξi=−1 and u,ξi|ξi=1=±u,ξi|ξi=−1, (2.3) ......ProcR wfieiltdhathned+theorfr−eqfuoernpcey,riodicoranti-periodiccases,respectively.Wenowposeanansatzforthe .....SocA u(X,ξ)=u0(X,ξ)+(cid:3)u1(X,ξ)+(cid:3)2u2(X,ξ)+···⎫⎬⎭ (2.4) ........469:2012 and Ω2=Ω02+(cid:3)Ω12+(cid:3)2Ω22+···. ...053 .3 The u(X,ξ)’s adopt the boundary conditions (2.3) on the edge of the cell. An ordered set of i equationsemergeindexedwiththeirrespectivepowerof(cid:3),andaretreatedinturn, (au0,ξi),ξi+Ω02ρu0=0, (2.5) (au1,ξi),ξi+Ω02ρu1=−(2au0,ξi+a,ξiu0),Xi−Ω12ρu0 (2.6) and (au2,ξi),ξi+Ω02ρu2=−au0,XiXi−(2au1,ξi+a,ξiu1),Xi−Ω12ρu1−Ω22ρu0. (2.7) The leading order equation (2.5) is independent of the long scale X and is a standing wave on theelementarycellexcitedataspecificeigenfrequencyΩ0 andassociatedeigenmodeU0(ξ;Ω0), modulatedbyalong-scalefunctionf0(X)andso u0(X,ξ)=f0(X)U0(ξ;Ω0). (2.8) Atthispoint,wewillassumeisolatedeigenfrequencies,butrepeatedeigenvaluesariseandare discussedlater.Theentireaimistoarriveatapartialdifferentialequationforf0 posedentirely uponthelongscale,butwiththemicroscaleincorporatedthroughcoefficientsthatareintegrated, notnecessarilyaveraged,quantities. Before we continue to the next order, equation (2.6), we define the Neumann boundary conditionsontheholes,∂S2, ∂u ∂n=u,xini|∂S2=0, (2.9) where n is the unit outward normal to ∂S2, and which in terms of the two scales and ui(X,ξ) become U0,ξini=0, (U0f0,Xi+u1,ξi)ni=0 and (u1,Xi+u2,ξi)ni=0. (2.10) The leading order eigenfunction U0(ξ;Ω0) must satisfy the first of these conditions. Moving to the first-order equation (2.6), we invoke a solvability condition by integrating over the cell the productofequation(2.6)andU0minustheproductofequation(2.5)andu1/f0(X).Theeigenvalue Ω1 iszero,andwecansolveforu1=f0,XiU1i(ξ),soU1 isavectorfield.Byre-invokingasimilar solvabilityconditionforequation(2.7),weobtainthedesiredpartialdifferentialequationforf0 ⎫ Tijf0,XiXj+Ω22f0=0, where ⎪⎪⎬ Tij=(cid:2)(cid:2) ρtUij2dS fori,j=1,2⎪⎪⎭ (2.11) S 0 posedentirelyonthelongscaleX.Thetensort consistsofintegralsoverthemicrocellinξ and ij 6 isultimatelyindependentofξ.Theformulationsfort read ij (cid:3)(cid:3) (cid:3)(cid:3) and tii= SaU02d(cid:3)(cid:3)S+ Sa(U1i,ξiU0−U1iU0,ξi)dS fori=1,2 (2.12) ..........rspa.royalso tij= Sa(U1j,ξiU0−U1jU0,ξi)dS fori(cid:7)=j. (2.13) ....ciety .p .u Thereisnosummationoverrepeatedsufficesforthet .Notably,althoughthegeneralapproach .b ii ..lis followsCrasteretal.[15],therearesubtledifferencesinducedbytheNeumannconditions;the .h nsoolulotinognetrhuerseeftohrethaeuxfiirlisat-royrdfuenrcetqiounatVio1n(ξis;Ωof0)t,hwehfoicrmh tUur1n(ξs;Ωou0t)=toVb1e(ξn;uΩm0)e−ricξaUlly0(ξa;wΩk0w).aWrde. .......ing.org Icpfiononansnrittt∂deeiSaai-t2ledi.old,enTimsfshofeeaelvnrsenittnnhupgtemaiacldelekriaearidecqgaciuentlal[gys3tioo6oflr]nou,d,rtteih(orUaeneUr1qsei1bujoi,yaξsfit)aiUm,oξllin0ou+,wcoahnΩinn∂d0s2gSiρms1uUuspa1bnljtesod=er.tqw−ruUei(aet12hntiagttUilhsey0en,aξUesire+1sacjo,lolagnau,ξerdtieiUoobmc0noo)eu,motnwrfipdeituatshhr.teeytdhcnoeounnssdi-anhimtgoioemanbossogtouaefnnn(d2de.oaa1urr0dys) ...................ProcRSocA469:2012 (a) Repeatedeigenvalues ..05 .3 .3 A potential limit case not treated above is that, for some standing wave frequencies, there is more than one propagating mode, i.e. there are repeated eigenfrequencies with multiplicity p. Thegeneralsolutiontotheleadingorderproblemthenbecomes u0=f0(l)(X)U0(l)(ξ;Ω0), (2.14) withsummationassumedoverrepeatedsuperscriptsl,and (cid:7) (cid:8) ∂ A +Ω2B fˆ(l)=0 for m=1,2,...,p, (2.15) ∂X jml 1 ml 0 j withΩ1notnecessarilyzero,and (cid:3)(cid:3) (cid:3)(cid:3) Ajml= Sa(U0(m)U0(l,)ξj−U0(m,ξj)U0(l))dS and Bml= ρU0(l)U0(m)dS. (2.16) Thecoupledsystemofpartialdifferentialequations(2.15)forthef(l)(X)aresolved,butbecome 0 degenerateifΩ1=0.Formostoftheexamplestreatedinthisarticle,Ω1 isfoundtobezero.We thenhavetoproceedinasimilarwayusedtoobtainequation(2.11).Wegetanotherdegenerate casewherethecoupledpartialdifferentialequationsbecome (cid:7) (cid:8) ∂2 ∂2 A + D +Ω2B fˆ(l)=0 form=1,2,...,p, (2.17) ∂X∂X ml ∂X ∂X kjml 2 ml 0 i i k j withthefollowingcoefficients: (cid:3)(cid:3) (cid:3)(cid:3) A = aU(l)U(m)dS, B = ρU(l)U(m)dS (2.18) ml 0 0 ml 0 0 and (cid:3)(cid:3) Dkjml= Sa(U0(m)U1(lk),ξj−U0(m,ξj)U1(lk))dS, (2.19) andtherangeofvariationoflisequaltothemultiplicityoftheeigenvalue. (b) Theclassicallong-wavezero-frequencylimit The current theory simplifies if one enters the classical long-wave, low-frequency limit where Ω2∼O((cid:3)2) as U0 becomes uniform, and without loss of generality is set to be unity, over the elementarycell.Thefinalequationisagain(2.11)wherethetensort simplifiesto ij 7 (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) tii= SadS+ SaU1i,ξidS and tij=(cid:2)(cid:2)SaU1j,ξidS fori(cid:7)=j (2.20) ...rspa s(woliuthtionnoosufmmationoverrepeatedsuffices)andTij=tij/ SρdS.Intheaboveequations,U1i isa ........royalso (aU1j,ξi),ξi=−a,ξj, (2.21) ....ciety wciricthlebsoournSdRaRrsyicnoanndiottiohnersw(fi0s,Xeih+omu1o,ξgi)ennie=ou0somnetdhieuhmo,leabisocuonndsataryn.tIsnotehqeuilaltuiostnra(t2i.v2e1)eixsatmheplseasmoef .....publis .h aarsethatforU0,butwithdifferentboundaryconditions.ThespecificboundaryconditionsforU1j ......ing.org . where ni represents the normal vUec1tj,oξirnic=om−pnojnefnotrs.j=Th1e,2,role of U1 is to ensure Neum(2a.2n2n) .......ProcRS boundary conditions hold and the tensor contains simple averages of the stiffness and density ....ocA (cceloaqrsurseiicvctaaiollenenxttlpeyrrmeisnstivhoenartsfetoarkpetehsrmeinihttotoimvaicotycgoeuannniztdetdhpeecorbmeofuefiancbideialnirttyyincfooanrdsiTctaiEolanrmswoadtaev∂seS)2e.sqEuupqauptialoetnmionewn(itt2eh.d20p)beryisiottdhhieec ........469:2012 .0 coefficienta;(2.21)isthewell-knownannexproblemofelectrostatictypesetonaperiodiccell[8,9] ..53 .3 andalsoholdsforthehomogenizedvectorMaxwellsystem,whereU1nowhasthreecomponents andi,j=1,2,3[37]. 3. Illustrativeexamples WenowillustratethetheoryusingarraysofcircularholesandSRRsandforperfectstructuresfor whichfulldispersiondiagramscanbefoundnumerically.Tocomparewiththegeneraltheory, wenowspecializeinBlochwaveswhereu(x+2lB)=u(x)exp(2liκ·B),whichtranslatesintwo- scalecoordinatesasu(X+2(cid:3)B,ξ)=u(X,ξ)exp(2iκ·B),whereBiseitherb1,b2 orb1+b2 with biastheorthonormalunitvectors.Floquet–Blochboundaryconditionsonthecellimplyf0(X)= exp(iκX/(cid:3)).Inthisnotation,κ =K −d andd =0,π/2,−π/2dependingonthelocationinthe j j j j j j Brillouinzone.Equation(2.11)andthefrequencyexpansionofequation(2.4)leadto T Ω∼Ω0+ 2Ωij0κiκj, (3.1) withsimilarresultsfor(2.17);thus,onecancomparedirectlywiththefullnumerics.Itisworth whilenotingtheuseofT coefficients,astheirsignandabsolutevaluegiveinformationabout ij thegroupvelocityforthespecifiedfrequenciesandlocationsoftheBrillouinzone. (a) Latticeofsquarecellswithcircularinclusions The dispersion curves for arrays of cylindrical holes have been treated by many authors [38] amongothers,andweproceedbycomputingthemnumericallyusingCOMSOLMULTIPHYSICS andbyusingtheasymptoticsdevelopedin§2.Wechoosetoillustratethemfortwoholeradii, withthegeometryasasquareofsidelength2andtheinclusion’sradiusiseither0.4or0.8,in figures2and3,respectivelyaroundtheedgesoftheirreducibleBrillouinzoneoffigure1b.These dispersion diagrams illustrate interesting features such as a Bragg stop band (due to multiple scatteringoflightbetweenthecircularinclusions)thatisabsentforthesmallholes(figure2),but whichdevelopsforlargerholes(figure3)asthemultiplescatteringbecomesmorepronounced. Inbothfigures2and3,itisclearthattheasymptoticscapturethefinedetailsofthedispersion curves near each standing wave frequency. The classical long-wave limit near the origin has a linear asymptotic dispersion curve, from §2b, and these capture the gradient of numerically calculated paths near the origin perfectly in both figures, showing that homogenization can indeed be used in TE polarization. Figure 2b,c shows expanded regions near repeated roots (a)5.0 (b) 3.3 8 4.5 3.1 ..rsp .a 4.0 W 2.9 ........royalso 3.5 ..cie 2.7 ..ty .p .u .b 3.0 2.5 ...lish –1 G 1 ..in .g W 2.5 ....org . 2.0 (c) 2.0 ......ProcR .S 1.5 ....ocA 1.0 W 1.9 ........469:2012 .0 .5 0.5 ..33 0 1.8 –1 0 1 2 3 2 X 2.5 M G X M wavenumber wavenumber Figure2.Thedispersiondiagramforanarrayofsquarecells(side2)withcircularinclusionsofradius0.4.(a)Dispersion curvesfromnumerics(solidlines),theasymptoticsolutionsfromHFHtheory(dashedlines)andthelinearlong-waveclassical homogenizationasymptoticsarethedottedlinesemergingfromtheorigin.(b,c)Enlargementsnearrepeatedeigenvalues wheretheasymptoticsfrom(2.17)areused. usingtheasymptoticsof§2awiththetheorycapturingfinedetailssuchaschangesincurvature; notably, all of this behaviour is encapsulated in the tensor T that is independent of the ij microscalecoordinates. Astheholeradiusincreases,astopbandopensupwiththeacousticbranchisolatedfromthe others(figure3a),andthechangesinthefielduareconcentratedalongtherelativelythinpieces ofremainingmaterial;atypicaleigensolutionisshowninfigure3c.Thismotivatesonetoreplace thecirculararraybyanarrayofsimplestringsorthinligamentsintheformofasquareframe,for whichthedispersionrelation 2cos(2Ω)=cos(2κ1)+cos(2κ2) (3.2) iseasilyfound[35,39].Thisdispersionrelation,fortheacousticbranch,isshowninfigure3band isagoodapproximationtothatoflargeholescapturingthemainfeatures.Ifoneconsidersthe (cid:3) pathMX intheBrillouinzone,onenoticesthat(3.2)givesacompletelyflatband;thisisrelated tothestrikingoccurrenceofdirectionalstandingwaves[33,40–42]thatareofcurrentinterestin discreteorframe-likestructures.Notably,thecontinuumsystemofcylinderssharesthisfeature, althoughthepathisnolongerperfectlyflat,suggestingthatdirectionalstandingwavesforming cross-likevibrationswillexistherealso;thisisexploredin§5. (b) Split-ringresonator Wenowmodifythesimplecircularholebyinsertingasmallercircularinclusionwithinitattached tothehole’swallsbyligaments.Theratioofwidthtolengthoftheligamentsused,aswellastheir number, play a major role in the underlying physics. Again, there have been many numerical (a) 9 5.0 4.5 ..rsp .a 34..50 ........royalso ..cie 3.0 ...typ .u .b W 2.5 ..lis .h ..in 2.0 ....g.org . 11..05 ......ProcR .S 0.5 ....ocA 0–M1.5 –1.0 –0.5 G0 0.5 1.0 1.5 2.0 X 2.5 3.0 3.5 M .........469:20120 .5 .3 (b) (c) .3 1.5 1.0 W 0.5 0 −1 0 1 2 3 4 M G X M X´ Figure3.Thedispersiondiagramisshownforsquarecells(ofside2)withcircularinclusionsofradius0.8.(a)Followsfigure2a, butforthislargerradius.(b)Theacousticbranch(solidlines)withthedispersioncurvesfromaframeofthinstringsalsoshown (dashedlines).(c)TheeigensolutionatMontheacousticbranchthatisinphaseverticallyandoutofphasehorizontallywith thevariationconcentratedalongthehorizontalpieces. studiesfordispersiondiagrams,forinstanceinGuenneauetal.[43],andsemi-analyticalworkfor narrowgapsasinLlewellyn-Smith&Davisetal.[44].Figure4a–cshowsthedispersioncurves together with the asymptotics obtained from §4a for ‘long’ ligaments with a width to length ratio η=h/l of 0.2. The new feature in comparison with figure 3 is the appearance of a low- frequencystopbandbelowtheBraggstopband,whoseupperedgeremainsvirtuallyunaffected bytheinsertionoftheresonatorineachcircularinclusionofthearray.Thelow-frequencystop bandisassociatedwithalocalizedmodeuponresonanceoftheresonator,andisresponsiblefor artificial magnetism in metamaterials in TE polarization. Physically, an array of cylinders with capacitive splits such as in figure 4a–c respond resonantly to radiation with the magnetic field whenitisorientedalongthecylindricalaxes[22].Theoscillatingmagneticfieldinducescurrents to run around the perfectly conducting rings. These currents feel a finite inductive impedance duetothefinitesizeoftheconductingloops,whiletheyfeelacapacitiveimpedanceduetothe capacitivegapswithintheconductingloops.Thisgivesrisetoaresonantresponseofthesystem wheretheresonanceisdrivenbythemagneticfieldoftheradiationwithaconsequentresonant enhancement of the magnetic polarizability of each cylinder. If the array period is sufficiently small compared to the wavelength of the applied magnetic field, then the metamaterial is describedbyaneffectivemagneticpermeability[7].Thiseffectivemagneticpermeabilitydisplays (a) (b) (c) 4.5 10 4.0 ..rsp .a 3.5 ........royalso ..cie 3.0 ..ty .p .u .b 2.5 ...lish W ...ing 2.0 ....org . 1.5 ......ProcR .S ....ocA 01..50 ........469:2012 .0 .5 .3 .3 0 −1 0 1 2 3 −1 0 1 2 3 −1 0 1 2 3 M G X M M G X M M G X M Figure4.Thedispersiondiagramshownforanarrayofsquarecells(side2)containingcircularholesofradius0.8,andwith circularinclusionsofradius0.5,attachedtotherestofthecellbytwo,fourandeightthinligamentsin(a–c),respectively. Thedispersioncurvesfromnumericsareshownassolidlines,theasymptoticHFHresultsareshownasdashedlines,withthe low-frequencylinearclassicalhomogenizationshowndottedemergingfromtheorigin.Thethinligamentapproachof§4a givesestimatesforthefirstnon-zeroeigenvalueatΓ,whicharethecrossesonthefrequencyaxis.Numericalvaluesforthese estimatesare0.7082,0.9941,1.3851versusfinite-elementsimulationsof0.7058,1.0281,1.4845fortwo,fourandeightligaments, respectively.Thesixthmodeoffigure4bisflatatfrequency3.741andcorrespondstothedipolemodedescribedin§4with approximatefrequency3.6824. a strong dispersion near the resonance frequency of the SRR, and it can become negative in the frequency band just above the resonance frequency, i.e. in the low-frequency stop band. Sadly,thelow-frequencystopbandappearsatfrequenciesalreadybeyondthescopeofclassical homogenization,butfortunatelyHFHcapturesitsfinerdetails,asinfigure4a–c,andthusunveils thefascinatingphysicsofartificialmagnetism.Forinstance,theinvertedcurvatureofthesecond dispersioncurvearoundtheΓ pointinfigure4a,whichisahallmarkofaMieresonancedriving theartificialmagnetism[22]iscapturedbytheHFH,asistheflatbandalongtheXMpath,which isassociatedwithalocalizedmodeintheSRR(whichisthereforeinsensitivetoanyvariationof theFloquet–Blochphaseshiftacrosstheunitcellalongthispath).Thehighlydispersivephysics ofthelow-frequencystopbandwillrevealtheultra-refractionandAANReffectsshownin§5. (c) Athinannuluswithholes For contrast, we investigate the effect of shortening the ligaments so h/l is of order 1; adding morecutsinthethinannuluspreservesthelowestresonantfrequency,butitbecomeslesssharp, whichmakesthelow-frequencybandgapwider.Aphysicalsideeffectisthatartificialmagnetism weakenswhentheresonanceislesssharp,i.e.effectivepermeabilityislessdispersiveandmight notreachlargeenoughnegativevaluesforpotentialmetamaterialapplications,suchaslensing via negative refraction. On the other hand, the metamaterial might work over a broader range offrequenciesifthestopbandwidens,andthiscouldbeadesignrequirement.Thisleadstoa subtlebalancebetweenhavingasharpresonanceandawidelow-frequencystopband;HFHcan